No CrossRef data available.
Article contents
Characterization of 0.5 MHz Silicon-Based Ultrasonic Nozzles Using Multiple Fourier Horns
Published online by Cambridge University Press: 01 February 2011
Abstarct
This paper presents the experimental results of impedance analysis and longitudinal vibration measurement of micro-fabricated 0.5 MHz silicon-based ultrasonic nozzles. Each nozzle is made of a piezoelectric drive section and a silicon-resonator consisting of multiple Fourier horns each with half wavelength design and twice amplitude magnification. The experimental results verified the simulation prediction of one pure longitudinal vibration mode at the resonant frequency in excellent agreement with the design value. Furthermore, at the resonant frequency, the measured longitudinal vibration amplitude gain at the nozzle tip increases as the number of Fourier horns (n) increases in good agreement with the theoretical value of 2n. Using this design, very high vibration amplitude at the nozzle tip can be achieved with no reduction in the tip cross sectional area. Therefore, the required electric drive power should be drastically reduced, decreasing the likelihood of transducer failure in ultrasonic atomization.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004