Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T18:24:37.805Z Has data issue: false hasContentIssue false

Characterization and Evolution of Microstructures Formed by High Dose Oxygen Implantation of silicont

Published online by Cambridge University Press:  28 February 2011

M. K. El-Ghor
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
T. P. Sjoreen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. Narayan
Affiliation:
North Carolina State University, Raleigh, NC 27650
Get access

Abstract

High doses of oxygen were implanted in silicon to produce stoichiometric buried oxide structures. Microstructural analysis was performed using transmission electron microscopy, electron energy loss spectroscopy, and Rutherford backscattering/channeling techniques. Cavities were observed in the top silicon layers of the as-implanted samples in two forms: spherical cavities (30–300 Å in diameter) in the first 1000 Å below the surface, followed by a 500 Å wide lamellar array of elongated cavities. A post implantation annealing was carried out at temperatures between 1150°C and 1250°C for 3 h during which the cavities became faceted and a denuded zone of 400 Å was formed. However, with a 1300°C anneal the cavities disappeared and the density of the two prominent types of defects, namely precipitates (mostly amorphous, but occasionally crystalline) and dislocations, decreased significantly. The silicon-oxide interface became increasingly planar. Possible mechanisms of annealing of the cavities, the precipitates, and the associated planarization of the interface are proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Watanabe, M. and Tooi, A., Jpn. J. Appl. Phys. 5, 737 (1966).CrossRefGoogle Scholar
2. Izumi, K., Doken, M., and Ariyoshi, H., Elect. Lett. 14, 593 (1978).Google Scholar
3. Hayashi, T., Okamoto, H., and Homma, Y., Jpn. J. Appl. Phys. 19, 1005 (1980).Google Scholar
4. Hayashi, T., Maeyama, S., and Yoshi, S., Jpn. J. Appl. Phys. 19, 1111 (1980).Google Scholar
5. Mao, B.-Y., Chang, P.-H., Lam, H. W., Shen, B. W., and Keenan, J. A., Appl. Phys. Lett. 48, 794 (1986).CrossRefGoogle Scholar
6. Mogro-Campero, A., Love, R. P., Lewis, N., Hall, E. L., and McConnell, M. D., J. Appl. Phys. 60, 2103 (1986).CrossRefGoogle Scholar
7. Krause, S. J., Jung, C. O., Wilson, S. R., Lorigan, R. P., and Burnham, M. E., Mat. Res. Soc. Symp. Proc. 53, 257 (1986).CrossRefGoogle Scholar
8. Jaussaud, C., Stoemenos, J., Margail-, J., Dupuy, M., Blanchard, B., and Bruel, M., Appl. Phys. Lett. 46, 1064 (1985).CrossRefGoogle Scholar
9. Alice White, E., Short, K. T., Batstone, J. L., Jacobson, D. C., Poate, J. M., and West, K. W. (to be published).Google Scholar
10. Fathy, D., Krivanek, O. L., Carpenter, R. W., and Wilson, S. R., Inst. Phys. Conf. Ser. No. 67, 479 (1983).Google Scholar
11. Holland, O. W., Fathy, D., Narayan, J., Sjoreen, T. P., and Wilson, S. R., J. Non-Cryst. Solids 71, 163 (1985).CrossRefGoogle Scholar
12. Celler, G. K., Hemment, P. L. F., West, K. W., and Gibson, J. M., Appl. Phys. Lett. 48, 532 (1986).Google Scholar
13. Kulcinski, G. L., Brimhall, J. M., and Kissinger, H. E., in Radiation-Induced Voids in Metals, Corbett, J. W. and lanniello, L. C., Editors, p. 449, National Technical Information Service (CONF-710601), Washington, D.C. (1972).Google Scholar
14. Buswell, J. T., Fisher, S. B., Harbottle, J. E., Norris, D. I. R., and Williams, K. R., Ibid, p. 533.Google Scholar
15. Tan, T. Y., Goesele, U., and Morehead, F. F., Appl. Phys. A 31, 97 (1983).CrossRefGoogle Scholar
16. Narayan, J. and Holland, O. W., J. Electrochem. Soc. 131, 2651 (1984).Google Scholar
17. Holland, O. W., Narayan, J., and Fathy, D., Nucl. Instrum. Methods B 7/8, 243 (1985).Google Scholar
18. Homma, Y., Oshima, M., and Hayashi, T., Jpn. J. Appl. Phys. 21, 890 (1982).CrossRefGoogle Scholar
19. Haasen, Peter, Physical Metallurgy (Cambridge University P-ress, New York, 1978), p. 207.Google Scholar
20. Brimhall, J. L., Kissinger, H. E., and Kulcinski, G. L., in Radiation-Induced Voids in Metals, Corbett, J. W. and lanniello, L. C., Editors, p. 338, National Technical Information Service (CONF-710601), Washington, D.C. (1972).Google Scholar