Published online by Cambridge University Press: 01 February 2011
The novel phase change materials Si-Sb-Te films were prepared. The crystallization temperature of films increases with the increasing of Si concentration. Phase separation was observed in the Si-Sb-Te films, the dominant phase is Sb2Te3. The melting temperature of Si-Sb-Te decreased to ~550°C lower than 640°C of Ge2Sb2Te5. The decrease of film thickness of Si-Sb-Te films is less than 2% after annealing at 400°C, which is less than ~7% of the film thickness change of Ge2Sb2Te5 film. The crystalline resistivity of Si-Sb-Te films increased and the ratio of amorphous/crystalline resistivity of Si-Sb-Te films increased also comparing with Ge2Sb2Te5 film, which is benefit to reduce the writing current and keep higher on/off ratio of phase change memory. Reversible switch was performed in the devices with Si-Sb-Te films. The device with Si14.3Sb28.6Te57.2 film can be programmed with a 100 ns SET pulse and a 20 ns RESET pulse. The Reset current is only 1.37mA for a 10μm-sized device.