No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
We use SnS and Sb2S3 thin films of about 500 nm in thickness deposited on glass substrates by chemical deposition to develop solar cell structures: glass-SnO2:F/CdS/SnS/CuS/silver paint and SnO2:F/CdS/Sb2(S/Se)3/PbS/silver paint. Here, SnS and Sb2S3, and PbS are absorber materials suitable for large scale production, considering their abundance at 0.2 ppm (Sb) and 2 ppm (Sn) and 8ppm (pb) in the earth's crust according to published data. SnS films deposited through distinct reaction routes have optical band gap of 1.1 eV or 1.7 eV. In SnO2:F/CdS/SnS(1.1eV)/SnS(1.7 eV)/CuS/silver paint, open circuit voltage (Voc) of ≈ 400 mV, and short circuit current (Jsc)of 7 mA/cm2 are obtained with a cell efficiency of 1%. Sb2S3 thin films have optical band gap 1.7 eV, but could be reduced through reaction in Se-vapor, upon which solid solutions of Sb2(S/Se)3 are formed. In SnO2:F/CdS/Sb2(S/Se)3/PbS/silver paint, Voc of ≈ 640 mV, Jsc of 7 mA/cm2 and conversion efficiency of 1.5% are obtained.