Article contents
Characteristics of Boron Doped Mesophase Pitch-Based Carbon Fibers as Anode Materials for Lithium Secondary Cells
Published online by Cambridge University Press: 10 February 2011
Abstract
Mesophase pitch-based Carbon Fibers(MCF) have been investigated as anode materials for lithium secondary cells by examining their physical and electrochemical properties. Discharge capacity and initial charge-discharge efficiency of the materials were studied in relation to the heat treatment temperatures of MCF. MCF heat treated at about 3,000° C gave high discharge capacity over 310mAh/g, good efficiency (93 %) and superior current capability of 600mA/g (6mA/cm2). On the other hand, to improve the battery capacity, Boron was doped to the fiber about several % by adding B4C to the pre-carbonized milled fibers and then heat-treated up to 3000°C in Ar. Then heat treated at 2,500°C under vacuum condition to remove remained B 4 C. The structure of Boron-doped fibers was characterized and compared with that of non-doped standard fibers, and also Li ion battery performances are evaluated. The Boron-doped MCF indicated improvement in graphitization and increased discharge capacity as high as 360mAh/g. The voltammograms of both fibers are different from each other. The cell mechanism is discussed based on the unique structure of Boron-doping to the MCF is very effective for the battery performance.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1998
References
REFERENCES
- 6
- Cited by