Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:51:20.958Z Has data issue: false hasContentIssue false

Characteristics and Growth of Strained-Layer InGaAs/GaInAsP/GaInP Quantum Well Lasers

Published online by Cambridge University Press:  25 February 2011

G. Zhang
Affiliation:
Department of Physics, Tampere University of Technology P.O. Box 692, SF-33101 Tampere, Finland
A. Ovtchinnikov
Affiliation:
Department of Physics, Tampere University of Technology P.O. Box 692, SF-33101 Tampere, Finland
J. Näppi
Affiliation:
Department of Physics, Tampere University of Technology P.O. Box 692, SF-33101 Tampere, Finland
H. Asonen
Affiliation:
Department of Physics, Tampere University of Technology P.O. Box 692, SF-33101 Tampere, Finland
Get access

Abstract

Strained-layer InGaAs/GalnAsP/GalnP separate-confinement-heterostructure quantum well lasers emitting at 980 nm have been developed. The lowest threshold current densities obtained for the single-quantum-well and three-quantum-well lasers are 72 and 150 A/cm2, respectively. The internal quantum efficiency is as high as 94 %, and the internal waveguide loss 5.4 cm−1. The transparency current density and gain coefficient are 33 A/cm2 per well and 0.091 μm A−1, respectively. High characteristic temperatures ranging from 220 to 280 K was obtained. The vertical and lateral full-width at half-maximum of the far-field pattern of the ridge waveguide laser are 47° and 13°, respectively. The results are comparable with the best values reported for the InGaAs/AlGaAs lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laidig, W. D., Caldwell, P. J., Lin, Y. F., and Peng, C. K., Appl. Phys. Lett. 44, 653 (1984).Google Scholar
2. Ijichi, T., Ohkubo, M., Matsumoto, N., and Okamoto, H., 12th IEEE Intern. Semiconductor Laser Conference, Davos, Switzerland, paper D-2 (1990).Google Scholar
3. Chen, Y. K., Wu, M. C., Kuo, J. M., Chen, M. A., and Sergent, A. M., Appl. Phys. Lett. 59, 2929 (1991).Google Scholar
4. Zhang, G., Näppi, J., Vänttinen, K., Asonen, H., and Pessa, M., Appl. Phys. Lett. 61, 96 (1992).Google Scholar
5. Ohkubo, M., Ijichi, T., Iketani, A., and Kikuta, T., Electron. Lett. 28, 1149 (1992).Google Scholar
6. Liau, Z. L., Palmateer, S. C., Groves, S. H., Walpole, J. N., and Missaggia, L. J., Appl. Phys. Lett. 60, 6 (1992).Google Scholar
7. Groves, S. H., Walpole, J. N., and Missaggia, L. J., Appl. Phys. Lett. 61, 255 (1992).Google Scholar
8. Tsang, W. T., Kapre, R., Wu, M. C., and Chen, Y. K, Appl. Phys. Lett. 61, 755 (1992).Google Scholar
9. Omnes, F. and Razeghi, M., Appl. Phys. Lett. 59, 1034 (1991).Google Scholar
10. Schubert, E. F. and Plook, K., Phys. Rev. B 30, 7021 (1984).Google Scholar
11. Garbuzov, D. Z., Yu. Antonishkis, N., Bondarev, A. D., Gulakov, A. B., Zhigulin, S. N., Katsavets, N. I., Kochergin, A. V., and Rafailov, E. V., IEEE J. Quantum Electron. QE–27, 1531 (1991).Google Scholar
12. Garbuzov, D. Z., Antonishkis, N. Y., Il'inskaya, N. D., Zhigulin, S. N., Katsavets, N. I., Kochergin, A. V., Pyataev, V. Z., and Fuksman, M. V., Conference Digest of the 13th IEEE Intern. Semiconductor Laser Conference. Takamatsu, Japan, paper L-8 (1992).Google Scholar
13. Yuasa, T., Ogawa, M., Endo, K., and Yonezu, H., Appl. Phys. Lett. 32, 119 (1978).Google Scholar
14. Zhang, G., Ovtchinnikov, A., Näppi, J., and Asonen, H., J. Crystal Growth, to be published.Google Scholar
15. Williams, R. L., Dion, M., Chatenoud, F., and Dzurko, K., Appl. Phys. Lett. 58, 1816 (1991).Google Scholar
16. Choi, H. K, and Wang, C. A., Appl. Phys. Lett. 57, 321 (1990).Google Scholar