Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:53:38.607Z Has data issue: false hasContentIssue false

Characterisation of Process Variables for Ultraviolet Assisted Injection Liquid Source Chemical Vapour Deposition (Uvils-Cvd) of Tantalum Pentoxide Films

Published online by Cambridge University Press:  10 February 2011

J.T. Beechinor
Affiliation:
National Microelectronics Research Centre, Lee Maltings, Prospect Row, Cork, Ireland
M.B. Mooney
Affiliation:
National Microelectronics Research Centre, Lee Maltings, Prospect Row, Cork, Ireland
P.V. Kelly
Affiliation:
National Microelectronics Research Centre, Lee Maltings, Prospect Row, Cork, Ireland
G.M. Crean
Affiliation:
National Microelectronics Research Centre, Lee Maltings, Prospect Row, Cork, Ireland
J.-Y. Zhang
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
I.W. Boyd
Affiliation:
Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
M. Paillous
Affiliation:
Institut National Polytechnique de Grenoble, École Nationale Superieure de Physique de Grenoble - LMGP, B.P. 46 F-38402 St. Martin d'Heres, France
C. Jimenez
Affiliation:
Institut National Polytechnique de Grenoble, École Nationale Superieure de Physique de Grenoble - LMGP, B.P. 46 F-38402 St. Martin d'Heres, France
J.-P. Stnateur
Affiliation:
Institut National Polytechnique de Grenoble, École Nationale Superieure de Physique de Grenoble - LMGP, B.P. 46 F-38402 St. Martin d'Heres, France
Get access

Abstract

The characterisation of the physical and chemical properties of tantalum pentoxide (Ta2O5) films, deposited on silicon using a newly developed low temperature deposition technique - ultraviolet assisted injection liquid source chemical vapour deposition (UVILSCVD), is reported. The effect of deposition parameters including substrate temperature, oxidising agent (N2O) flow, precursor carrier gas (Ar) flow, number of drops of precursor injected and precursor solution concentration is discussed. Spectroscopic ellipsometry (SE) was used to determine the refractive index and thickness of the Ta2O5 films. The film thickness was observed to increase with temperature, number of injected drops and precursor solution percentage, while the refractive index was found to be most sensitive to temperature. SIMS measurements showed good agreement with extracted thickness values. Fourier transform infrared spectroscopy was used to identify and monitor Ta2O5 (pentoxide), TaO2 and TaO (suboxide) formation via curve fitting analysis of spectral features. Results showed increased suboxide formation as a function of increasing pressure and as a function of decreasing N2O flow, precursor solution concentration and number of drops injected. The summation of the areas under peaks characteristic of the tantalum-oxygen bonding correlated well with the thicknesses determined by spectroscopic ellipsometry. The FTIR spectra revealed a dramatic increase in the proportion of suboxide in the absence of the oxidising gas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Ohta, K., Yamada, K., Shimizu, R. and Tarui, Y., IEEE Trans. Electron. Devices 29, 368 (1982)10.1109/T-ED.1982.20711Google Scholar
2 Kato, T., Itoh, T., Taguchi, M., Nakumura, T. and Ishikawa, H., Symp. on VLSI Technology, Digest of Technical Papers, IEEE, Piscataway NJ, USA, (1983) 86 Google Scholar
3 Oehrlein, G.S., J. Appl. Phys 59, 1587 (1986)10.1063/1.336468Google Scholar
4 Lu, Q., Park, D., Kalnitsky, A., Chang, C., Cheng, C.C., Tay, S.P., King, T.J. and Hu, C., IEEE Elec. Device Lett., 19, 341 (1998)Google Scholar
5 An, C.H. and Sugimoto, K., J. Electrochem. Soc. 139, 1956 (1992)10.1149/1.2069529Google Scholar
6 Hitchens, W R, J. Electrochem Soc. 140, 2615 (1993)10.1149/1.2220872Google Scholar
7 Devine, R A B and Vallier, L., Appl. Phys. Lett. 68, 1775 (1996)10.1063/1.116663Google Scholar
8 Lan, W.H., Tu, S.T., Yang, S.J. and Huang, K.F., Jpn. J. Appl. Phys. 29, 997 (1990).10.1143/JJAP.29.997Google Scholar
9 Zhang, J.-Y., Bie, L.-J. and Boyd, I.W., Jpn. J. Appl. Phys. 37, L27–L29 (1998)10.1143/JJAP.37.L27Google Scholar
10 Atanassova, E. and Spassov, D., Proc. 21st Int. Conf. on microelectronics (MIEL 97), vol 2, 14-17 Sept. 1997, 613616, IEEEGoogle Scholar
11 Felten, F., Senateur, J.P., Labeau, M., Yu-Zhang, K. and Abrutis, A., Thin Solid Films 296, 7981(1997)10.1016/S0040-6090(96)09351-0Google Scholar
12 Kern, W., RCA Review (June 1970) 187206 Google Scholar
13 Kizilyalli, I.C., Huang, R.Y.S. and Roy, P.K., IEEE Electron Device Letters 19, 423–5 (1998)10.1109/55.728900Google Scholar
14 Jones, A.C., Leedham, T.J., Wright, P.J., Crosbie, M.J., Williams, D.J., Lane, P.A. and O'Brien, P., Mat. Res. Soc. Symp. Proc., 495, 1121 (1998).10.1557/PROC-495-11Google Scholar
15 Forouhi, A.R. and Bloomer, I., Phys. Rev. B34, 7018, (1986)10.1103/PhysRevB.34.7018Google Scholar
16 Jellison, G.E. Jr., Optical Materials 1, 4147 (1992)10.1016/0925-3467(92)90015-FGoogle Scholar
17 Weltner, W. and McLeod, D., J. Chem. Phys. 42, 882 (1965)10.1063/1.1696076Google Scholar
18 Brnicevic, N. and Djordjevic, C., J. Less-Common Metals 21, 469471 (1970)10.1016/0022-5088(70)90055-XGoogle Scholar
19 Ghodsi, F.E., Tepehan, F.Z. and Tepehan, G.G., Thin Solid Films 295, 11 (1997)10.1016/S0040-6090(96)09509-0Google Scholar