Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T07:29:52.598Z Has data issue: false hasContentIssue false

Characterisation of Diamond-like Carbon by Raman Spectroscopy and Optical Constants

Published online by Cambridge University Press:  15 February 2011

C. Mölßner
Affiliation:
Swiss Federal Institute of Technology, Lausanne, Switzerland, [email protected]
P. Grant
Affiliation:
Institute for Microstructural Sciences
H. Tran
Affiliation:
Institute for Microstructural Sciences
G. Clarke
Affiliation:
Institute for Microstructural Sciences
D. J. Lockwood
Affiliation:
Institute for Microstructural Sciences
H. J. Labbé
Affiliation:
Institute for Microstructural Sciences
B. Mason
Affiliation:
Institute for Microstructural Sciences
R. Berriche
Affiliation:
Institute for Aerospace Research, National Research Council of Canada, Ottawa, Ont., K1A 0R6, Canada
Get access

Abstract

Crystalline diamond coatings and, increasingly, diamond like amorphous carbon (DLC) films are used for tribological and protective layers for their hardness and chemical inertness. They are also under investigation for their electron emitting properties, with possible applications in field emission displays. DLC films were deposited by laser ablation using a KrF excimer laser and fluences between 0.5 and 2 J/cm2. FTIR measurements did not show the presence of hydrogen in the films. Raman spectra allowed for the determination of the nature of the graphitic and diamond bonds (sp2 and sp3) as well as information about the disorder and short range order in the films. For a better determination of the sp3-content, which is often hidden in the Raman spectra, a correlation with optical properties in the near IR to near UV region was established. These values depended strongly on the substrate temperature and the laser fluence. DLC formation could be demonstrated even at substrate temperatures close to room temperature. Vickers hardness values and first measurements on the electron emissivity of the films can be correlated to the diamond character and the preparation method of the films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Panar, O.S., Sarangi, D., Kumar, S., Dixit, P., Bhattacharyya, R., J. Vac. Sci. Technol. A 13, 2519 (1995)Google Scholar
2. Pappas, D.L., Hopwood, J., J. Vac. Sci. Technol. 12, 1576 (1994)Google Scholar
3. Goruppa, A.A., Braithwaite, N.St. J., Diamond and Related Materials 3, 1223 (1994)Google Scholar
4. Ganapathi, L., Giles, S., Rao, R., Appl. Phys. Lett. 63, 993 (1993)Google Scholar
5. Demers, R.T., Harris, D.G., SPIE Vol.1146, 48 (1989)Google Scholar
6. Davanloo, F., Juengermann, E.M., Jander, D.R., Lee, T.E., Collins, C.B., J. Mater.-Res. 5, 2398 (1990)Google Scholar
7. Pappas, D.L., Saenger, K.L., Bruley, J., Krakow, W., Cuomo, J.J., J. Apll. Phys. 71, 5675 (1992)Google Scholar
8. Kumar, N., Schmidt, H. K., Clark, M. H., Ross, A., Lin, B., Fredin, L., Baker, B., Patterson, D, Brookover, W., Xie, C., Hilnert, C., Fink, R.L., Potter, C.N., Krishnan, A., Eichman, D., SID94 Digest, p.94 (1994)Google Scholar
9. Okano, K., Hoshina, K., lida, M., Koizumi, S., Inuzuka, T., Appl. Phys. Lett. 64, 2742 (1994)Google Scholar
10. Okano, K., Gleason, K.K., Electr. Lett. 31, 74 (1995)Google Scholar
11. Feng, Z., Brown, I.G., IIIAger, J.W., J. Mater. Res. 10, 1585 (1995)Google Scholar
12. Himpsel, F.J., Knapp, J.A., VanVechten, J.V., Eastman, D.E., Phys. Rev. B 20, 624 (1979)Google Scholar
13. Zhang, Z., Wensell, M., Bernholc, J., Phys. Rev. B 51, 5291 (1995)Google Scholar
14. Yamada, T., Chuang, T.J., Seki, H., Mitsuda, Y., Molecular Physics 76, 887 (1991)Google Scholar
15. Ravi, K.V., Mat. Sci. Eng. B 19, 203 (1993)Google Scholar
16. Givargizov, E. I., J. Vac. Sci. Technol B 13, 414 (1995)Google Scholar
17. Laou, P., Shi, I., Py, C., Mößner, C., Grant, P., to be publishedGoogle Scholar
18. Grant, P.D., Denhoff, M.W., Tran, H., Physica C 185–189, 2099 (1991)Google Scholar
19. Jin, J.-M., Dharma-wardana, M.W.C., Lockwood, D.J., Aers, G.C., Lu, Z.H., Lewis, L.J., Phys. Rev. Lett. 75, 878 (1995)Google Scholar
20. Berriche, R., Scripta Metall. Mat. 32, 617 (1995)Google Scholar
21. McKenzie, D.R, Muller, D., Pailthorpe, B.A., Phys. Rev. Lett 67, 773 (1991)Google Scholar
22. Krajnovich, D.J., J. Chain Phys. 102, 726 (1995)Google Scholar
23. Germain, C., Girault, C., Gisbert, R., Aubreton, J., Catherinot, A., Diamond and related Materials 3, 598 (1994)Google Scholar
24. Mann, K., Müller, F., SPIE Vol.1835,13 (1992)Google Scholar
25. Knight, D.S., White, W.B., J. Mater. Res. 4, 385 (1989)Google Scholar
26. Nistor, L.C., VanLanduyt, J., Ralchenko, V.G., Konoenko, T.V., Obrazstova, E.D., Strelnitsky, V.E., AplI. Phys. Lett. A 58, 137 (1994)Google Scholar
27. Terranova, M.L., Sessa, V., Rigato, V., Caccavale, F., Braglia, M., Cocito, G., Thin Solid Films 232, 21 Google Scholar
28. Mö²ner, C., Sproule, I., unpublished resultsGoogle Scholar
28. Philipp, H.R., Ehrenreich, H., Phys. Rev. 129, 1550 (1963)Google Scholar
29. Savides, N., J. Appl. Phys. 58, 518 (1985)Google Scholar