Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T15:33:48.310Z Has data issue: false hasContentIssue false

A Channeling Study of Defect-Boron Complexes in Si

Published online by Cambridge University Press:  15 February 2011

M.L. Swanson
Affiliation:
Atomic Energy of Canada Limited, Chalk River, Ontario, Canada K0J 1J0
L.M. Howe
Affiliation:
Atomic Energy of Canada Limited, Chalk River, Ontario, Canada K0J 1J0
F.W. Saris
Affiliation:
Atomic Energy of Canada Limited, Chalk River, Ontario, Canada K0J 1J0
A.F. Quenneville
Affiliation:
Atomic Energy of Canada Limited, Chalk River, Ontario, Canada K0J 1J0
Get access

Abstract

Si crystals were doped with 0.1–0.2 at% 11B in the near surface region by ion implantation followed by thermal diffusion at 1373 K or by ruby laser annealing. The position of the B atoms in the Si lattice was determined by channeling measurements, utilizing both the yield of H+ ions (of incident energy 0.7 MeV) backscattered from Si atoms and the yield of alpha particles from the 11B(p,α)8Be nuclear reaction. Initially, 95–99% of the B atoms were substitutional. Irradiation at 35 K or 293 K with 0.7 MeV H+ displaced B atoms from lattice sites. The displacement rate was greater at 293 K than at 35 K, and was greater for diffused samples than for laser annealed samples. Following 35 K irradiations, a large increase in the fraction fdB of displaced B atoms occurred during annealing near 240 K. At higher annealing temperatures, fdB decreased over a broad temperature range from 425–825 K. Angular scans through <110> channels for the laser annealed samples after 293 K irradiation or after 35 K irradiation plus 293 K annealing showed a pronounced narrowing of the dip in 11B(p,α)8Be yields compared with the dip in yields from Si, whereas no narrowing was observed for <100> channels. These results indicate that B atoms were displaced into specific lattice sites by the migration of an interstitial B defect (the EPR G28 defect) near 240 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Stein, H.J. and Vook, F.L., Rad. Eff. 1, 41 (1969).CrossRefGoogle Scholar
2. Bean, A.R., Morrison, S.R., Newman, R.C. and Smith, R.S., J. Phys. C 5, 379 (1972).Google Scholar
3. Watkins, G.D., in Proc. Int. Conf. on Lattice Defects in Semiconductors, Freiburg, 1974 (Institute of Physics, London 1975), p.1.Google Scholar
4. Watkins, G.D., in Radiation Damage in Semiconductors, Baruch, P. ed. (Dunod, Paris, 1965) p. 97.Google Scholar
5. Watkins, G.D., in Radiation Effects in Semiconductors, Vook, F.L. ed. (Plenum Press, New York, 1968) p.67.Google Scholar
6. Watkins, G.D., Phys. Rev. B 12, 5824 (1975).CrossRefGoogle Scholar
7. Watkins, G.D., Phys. Rev. B 13, 2511 (1976).CrossRefGoogle Scholar
8. Elkin, E.L. and Watkins, G.D., Phys. Rev. 174, 881 (1968).Google Scholar
9. Watkins, G.D. and Corbett, J.W., Phys. Rev. 134A, 1359 (1964).Google Scholar
10. Watkins, G.D. and Corbett, J.W., Phys. Rev. 121, 1001 (1961).CrossRefGoogle Scholar
11. Brower, K.L., Phys. Rev. B 1, 1908 (1970).Google Scholar
12. Davies, J.A., in Channeling in Solids, Morgan, D.V. ed. (J. Wiley and Sons, New York, 1973), Ch.ll.Google Scholar
13. Picraux, S.T., in New Uses of Ion Accelerators, Ziegler, J.F. ed. (Plenum Press, New York, 1975) p. 229.CrossRefGoogle Scholar
14. Gemmell, D.S., Rev. Mod. Phys. 46, 129 (1974).Google Scholar
15. Haskell, J., Rimini, E. and Mayer, J.W, J. Appl. Phys. 43, 3425 (1972).CrossRefGoogle Scholar
16. Kool, W.H., Roosendaal, H.E., Wiggers, L.W. and Saris, F.W., Nucl. Instr. Meth. 132, 285 (1976).Google Scholar
17. Swanson, M.L., Davies, J.A., Quenneville, A.F., Saris, F.W. and Wiggers, L.W., Rad. Eff. 35, 51 (1978).Google Scholar
18. Wiggers, L.W. and Saris, F.W., Rad. Eff. 41, 149 (1979).CrossRefGoogle Scholar
19. Wiggers, L.W. and Saris, F.W., Proc. Int. Conf. IBMM, Budapest 1978, Gyulai, J. et al. eds. p. 583.Google Scholar
20. Swanson, M.L., Howe, L.M., Quenneville, A.F. and Saris, F.W., Rad. Eff. Lett. 50, 139 (1980).Google Scholar
21. Picraux, S.T., Brown, W.L. and Gibson, W.M., Phys. Rev. B 6, 1382 (1972).Google Scholar
22. Domeij, B., Fladda, G. and Johansson, N.G.E., Rad. Eff. 6, 155 (1970).Google Scholar
23. Andersen, J.U., Andreasen, O., Davies, J.A. and Uggerhøj, E., Rad. Eff. 7, 25 (1971).Google Scholar
24. Hofker, W.K., Thesis, University of Amsterdam (1975).Google Scholar
25. Young, R.T. et al. , Appl. Phys. Lett. 32, 139 (1978).Google Scholar
26. Bøttiger, J., Davies, J.A., Lori, J. and Whitton, J.L., Nucl. Instr. Meth. 109, 579 (1973).Google Scholar
27. Beckman, O., Huus, T. and Zupancic, C., Phys. Rev. 91, 606 (1953).CrossRefGoogle Scholar
28. Swanson, M.L., Howe, L.M. and Quenneville, A.F., Phys. Stat. Sol. (a), 31, 675 (1975).CrossRefGoogle Scholar
29. Swanson, M.L., Offermann, P. and Ecker, K.H., Can. J. Phys. 57, 457 (1979).CrossRefGoogle Scholar
30. Fladda, G., Björkqvist, K., Eriksson, L. and Sigurd, D., Appl. Phys. Lett. 16, 313 (1970).Google Scholar
31. North, J.C. and Gibson, W.M., Appl. Phys. Lett. 16, 126 (1970).CrossRefGoogle Scholar
32. Watkins, G.D. and Troxell, J.R., Phys. Rev. Lett. 44, 593 (1980).Google Scholar
33. Watkins, G.D. and Corbett, J.W., Phys. Rev. 138, 543, 555 (1965).Google Scholar
34. Troxell, J.R. and Watkins, G.D., Phys. Rev. B 22, 921 (1980).Google Scholar