Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T18:54:29.994Z Has data issue: false hasContentIssue false

Channeling defects in group-III nitrides during dry etching processes

Published online by Cambridge University Press:  15 March 2011

O. Breitschädel
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, GermanyPhone: +49-711-685-4961, Fax: +49-711-685-5097, [email protected]
J.T. Hsieh
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
B. Kuhn
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
F. Scholz
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
H. Schweizer
Affiliation:
4. Phys. Institute, University of Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany
Get access

Abstract

The effects of Ar+ ion beam etching (IBE) of AlGaN/GaN heterostructures and GaN/InGaN/GaN quantum well structures were investigated dependent on different ion incidence angles. The AlGaN/GaN heterostructure was measured before and after etching with respect to mobility and sheet resistance. The InGaN quantum well structure was measured with PL to determine the PL intensity and the energy shift, respectively. This experiments show that ion channeling is a significant defect generation phenomena in group- III nitrides at vertical ion incidence angle and can be minimized by tilting the sample against the ion beam.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S. and Fasol, G., The Blue Laser Diode, (Springer Verlag, Berlin, 1997)Google Scholar
2. Edgar, J.H., Stride, S., Akasaki, I., Amano, H. and Wetzel, C. (editors), Gallium Nitride and Related Materials (INSPEC, London, 1999)Google Scholar
3. Pearton, S. J., Vartuli, C. B., Shul, R. J., and Zolper, J. C, Mater. Sci. Eng. B31, 309 (1995).Google Scholar
4. Hsieh, J. T., Breitschädel, O., Kuhn, B., Scholz, F., Schweizer, H., and Pilkuhn, M., to be published.Google Scholar
5. Ping, T., Schmitz, A. C., Khan, M. Asif, and Adesida, I., J. Electronic Materials 25, 825 (1996).Google Scholar
6. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids, (Pergamon, New York, 1985)Google Scholar
7. Ziegler, J. F., editor, Handbook of Ion Implantation, (The Netherlands: North-Holland Publishing Company, Amsterdam, 1992)Google Scholar
8. Breitschädel, O., Gräbeldinger, H., Kuhn, B., Scholz, F., Walthes, W., Berroth, M., Daumiller, I., Schad, K.B., Kohn, E., and Schweizer, H., Electron. Lett. 35, 2018 (1999).Google Scholar
9. Schweizer, H., Lehr, G., Prins, F., Mayer, G., Lach, E., Krüger, R., Fröhlich, E., and Pilkuhn, M.H., Superlattices and Microstructures, 12, 419 (1992).Google Scholar
10. Qian, W., Rohrer, G.S., Skowronski, M., Doverspike, K., Rowland, L.B., and Gaskill, D.K., Appl. Phys. Lett. 67, 2284 (1995).Google Scholar