Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-25T13:39:20.496Z Has data issue: false hasContentIssue false

Channel Strain Characterization in Semiconductor Device by Techniques Based on Transmission Electron Microscope

Published online by Cambridge University Press:  13 September 2011

Jinghong Li*
Affiliation:
Microelectronics, STG, IBM, Hopewell Junction, NY 12533, USA
Jeff Johnson
Affiliation:
Microelectronics, STG, IBM, Hopewell Junction, NY 12533, USA
Dureseti Chidambarrao
Affiliation:
Microelectronics, STG, IBM, Hopewell Junction, NY 12533, USA
Yunyu Wang
Affiliation:
Microelectronics, STG, IBM, Hopewell Junction, NY 12533, USA
Anthony G. Domenicucci
Affiliation:
Microelectronics, STG, IBM, Hopewell Junction, NY 12533, USA
Get access

Abstract

Three techniques based on transmission electron microscope (TEM) have been successfully applied to measure strain/stress in the channel area of PMOS semiconductor devices with embedded SiGe in the source/drain areas: convergent beam electron diffraction (CBED), nano beam diffraction (NBD) and dark-filed holography (DFH). Consistent channel strain measurements from the three techniques on the same TEM sample (eSiGe PMOS with 17%Ge) were obtained. Reliable strain/stress measurement results in the channel area have been achieved with very good agreement with computer-aided design (TCAD) calculations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ghani, T., Armstrong, M., Auth, C., Bost, M., Charvat, P., Glass, G., Hoffmann, T., Thompson, K., Bohr, M. et al. ., IEDM Technical Digest (2003), p978980.Google Scholar
2. Chidambaram, P. R., Smith, B., Hall, L., Kim, Y., Jones, P., Irwin, R., Rotondaro, A., Grider, D. T., et al. ., Symp. on VLSI Tech. Diges. of Tech Paper (2004), p48 Google Scholar
3. Lou, Z., Chong, Y., Kim, J., Rovedo, N., Chidambarrao, D., Li, J., Davis, R., Schepis, D., Ng, H., Rim, K. et al. ., IEDM Technical Digest 2005), p495498 Google Scholar
4. Armigliato, A., Balboni, R., Benedetti, A., Carnevale, G. P., Cullis, A. G., Frabboni, S. and Piccolo, D., Solid State Phenomena, Vol. 8284 (2002), p727734 Google Scholar
5. Li, J., Domenicucci, A., Chidambraaro, D., Greene, B., Rovedo, N., Holt, J., Dunn, D., Rim, K. and Ng, H., MRS Proceedings, Vol. 913 (2006), p157 Google Scholar
6. Li, J., Lamberti, A., Domenicucci, A., Gignac, L., Utomo, H., Luo, Z., Rovedo, N., Fang, S., Ng, H., Holt, J., Madan, A., Lai, C. W., Ku, J. H., Schepis, D., Han, J.-P., Lagus, M., ECS Proceedings, Vol. 16, No. 10 (2008), p545549 Google Scholar
7. Hytch, M., Houdellier, F., Hue, F. and Snoeck, E., Nature Letters, Vol. 539 (2008) p1086 Google Scholar
8. Wolf, I. D., Senez, V., Balboni, R., Armigliato, A., Frabboni, S., Cedola, A., Lagomarsino, S., Microelectronic Engineering, 70 (2003), 425435 Google Scholar
9. Benedetti, A., Gullis, A. G., Armigliato, A., Balboni, R., Frabboni, S., Mastracchio, G. F., Pavia, G., Appl. Surf. Sci., 188 (2002), p214 Google Scholar