No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Ion beam induced epitaxial crystallization of Au and Ag doped amorphous Si results in segregation and trapping of the impurity. Combining the measured interface velocity and impurity profiles in segregation simulations provides a measure of the segregation coefficient k during growth. To adequately match the experimental profiles, k must increase during the early stage of growth until saturating at a temperature dependent value. This segregation process cannot be explained within standard models where k depends on the inteface velocity (kinetic trapping) or the interface impurity concentration (thermodynamic solubility). Instead the data suggests that the number of trapping sites at the interface increases during the initial stages of ion beam induced growth. We present several possible mechanisms for this trapping increase and discuss their significance in ion beam and thermal epitaxy models.