Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T17:42:55.103Z Has data issue: false hasContentIssue false

Changes to Alkali Ion Content Adjacent to Crystal-Glass Interfaces

Published online by Cambridge University Press:  01 February 2011

Michael J. D. Rushton
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, UK
Robin W. Grimes
Affiliation:
Department of Materials, Imperial College London, London SW7 2AZ, UK
Scott L. Owens
Affiliation:
Nexia Solutions Ltd., Warrington, Cheshire WA3 6AS, UK
Get access

Abstract

Atomic scale molecular dynamics simulations have been used to predict the location of glass modifying Na, Li and Mg species in a borosilicate Magnox type waste glass adjacent to interfaces with the (100) and (110) surfaces of MgO, CaO and SrO crystals. These simulations show a considerable increase in alkali and alkali earth concentration adjacent to specific interfaces. In particular, there are significant, systematic changes in Na, Li and Mg position and concentration as a function of both the crystal's terminating surface and composition.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ojovan, M. I. and Lee, W. E., An Introduction to Nuclear Waste Immobilisation. Amsterdam: Elsevier, 2005.Google Scholar
2 Rushton, M. J. D., Grimes, R. W. and Owens, S. L., submitted to J. Am. Ceram. Soc. Google Scholar
3 Rushton, M. J. D. PhD. Thesis, University of London, 2006.Google Scholar
4 Abraitis, P. K., Livens, F. R., Monteith, J. E., Small, J. S., Trivedi, D. P., Vaughan, D. J., and Wogelius, R. A., Appl. Geochem. 15, 1399 (2000).Google Scholar
5 Accelrys DISCOVER Molecular Simulation Program v2002.1. Accelrys, 2002.Google Scholar
6 Hoover, W. G., Phys. Rev. A, 31, 1695 (1985).Google Scholar
7 Abbas, A., Delaye, J. M., Ghaleb, D., and Calas, G., J. Non-Cryst. Sol. 315, 187 (2003).Google Scholar
8 Cormack, A. N., Du, J., and Zeitler, T. R., Phys. Chem. Chem. Phys. 4, 3193 (2002).Google Scholar
9 Shannon, R. D., Acta Crystallogr. A32, 751 (1976).Google Scholar