Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:05:50.627Z Has data issue: false hasContentIssue false

Challenges and Opportunities in Magnetic Resonance Force Microscopy

Published online by Cambridge University Press:  21 February 2011

John A. Sidles
Affiliation:
Department of Orthopaedics RK-10, School of Medicine, University of Washington, Seattle WA 98195, ([email protected])
Joseph L. Garbini
Affiliation:
Department of Mechanical Engineering FM-15, University of Washington, Seattle WA 98195, ([email protected])
Get access

Abstract

Recently the first experiments in magnetic resonance force microscopy (MRFM) have been conducted. In these experiments a force microscope cantilever is used to detect the magnetic force exerted by electrons and nuclei in a sample. The magnetization of the sample is modulated at the resonant frequency of the cantilever, using standard magnetic resonance techniques. The resulting excitation of the cantilever is detected optically. This article reviews the present status of MRFM technology, emphasizing the physical principles involved and the opportunities for further research and development. Particular emphasis is placed on single spin detection by MRFM and potential applications in biomolecular imaging.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rugar, D., Yannoni, C.S., and Sidles, J.A.; Mechanical detection of magnetic resonance. Nature 360, 563566 (1992).Google Scholar
2. Zuger, O. and Rugar, D.; First images from a magnetic resonance force microscope. Appl. Phys. Lett. 63, 24962498 (1993).Google Scholar
3. Rugar, D., Zuger, O., Yannoni, C. S. Hoen, S., Vieth, H.-M., and Kendrick, R. D.; Force detection of nuclear magnetic resonance. Science (in press).Google Scholar
4. Sidles, J. A.; Noninductive detection of single-proton magnetic resonance. Appl. Phys. Let. 58, 28542856 (1991).Google Scholar
5. Sidles, J. A.; Folded Stern-Gerlach experiment as a means of detecting magnetic resonance in individual nuclei. Phys. Rev. Lett. 68–70, 1124 (1992).Google Scholar
6. Sidles, J. A. Garbini, J. L. and Drobny, G. P.; The theory of oscillator-coupled magnetic resonance with potential applications to molecular imaging. Rev. Sci. Instr. 63, 38813899 (1992).Google Scholar
7. Sidles, J. A. and Rugar, D.; Signal-to-noise ratios in electrical and mechanical detection of magnetic resonance. Phys. Rev. Lett. 70, 35063509 (1993).Google Scholar
8. Bernstein, F. C. Koetzle, T. F. G. Williams, J. B. Meyer, E. F. Jr., Brice, M.D., Rodgers, J. R. Kennard, O., Shimanouchi, T., and Tasumi, M.; The protein data bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112, 535542 (1977).Google Scholar
9. Allen, F. H. Bergerhoff, G., and Sievers, R.; Data Commission of the International Union of Crystallography.Bonn/Cambridge/Chester (1987), pp. 107132.Google Scholar
10. All entries in the October 1993 full release index file 'compounds.lst' were reviewed. This list was obtained by ftp from the Brookhaven Protein Data Bank gopher server 'pdb.pdb.bnl.gov'. This was the most recent list on the server as of January 1994.Google Scholar
11. Lam, Y. S. et al. ; Rational design of potent, bioavailable, nonpeptide cyclic ureas as HIV protease inhibitors. Science 262, 380384 (1994).Google Scholar
12. Harris, C. C.; p53: at the crossroads of molecular carcinogenesis and risk assessment. Science 262, 19801991 (1984).Google Scholar
13. Koshland, D. E. and Culotta, E.; p53 sweeps through cancer research. Science 262, 19581961 (1984).Google Scholar
14. Abragam, A.; Principles of Nuclear Magnetism. Clarendon Press, Oxford (1982). For examples of cyclic adiabatic inversion, see page 86 and page 548.Google Scholar
15. Slichte, C. P.; Principles of Magnetic Resonance. Harper & Row, New York, (1963).Google Scholar
16. Hoen, S., Zuger, O., Yannoni, C. S. Mamin, H. J. Wago, K., and Rugar, D.; Fabrication of ultrasensitive force detectors. in Technical Digest of the 1994 Solid State Sensor and Actuator Workshop, Hilton Head, SC (June 1994), pp. 13199 (in press).Google Scholar
17. Mason, W. P.; Electromechanical Transducers and Wave Filters, Van Nostrand, New York (1942), pp. 90. Google Scholar
18. Fraser, D. B.; Impurities and anelasticity in crystalline quartz. in Physical Acoustics Vol. V, Mason, W. P. (ed.), Academic Press, NY (1968). See pp. 59110.Google Scholar
19. Granato, A. V. and Lucke, K.; The vibrating string model of dislocation damping. in Physical Acoustics Vol. IVA. Mason, W. P. (ed.), Academic Press, NY (1966). See pp. 225276.Google Scholar
20. Mason, W. P.; Effect of impurities and phonon processes on the ultrasonic attenuation of germanium, crystal quartz, and silicon, in Physical Acoustics Vol IIIB. Mason, W. P. (ed.), Academic Press, NY (1966). see pp. 235286.Google Scholar
21. Kiemens, P. G.; Effect of thermal and phonon processes on ultrasonic attenuation. in Physical Acoustics Vol. IIIB. Mason, W. P. (ed.), Academic Press, NY (1966). see pp. 201234.Google Scholar
22. Berry, B. S. and Nowick, A. S.: Anelasticity and internal friction due to point defects in crystals. in Physical Acoustics Vol. IIA. WP, W. P. Mason (ed.), Academic Press, NY (1966). See pp. 142.Google Scholar
23. Ferreirinho, J.; Internal friction in high Q materials, in The Detection of Gravity Waves. Blair, D. G. (ed.) Cambridge Univ. Press, Cambridge (1991). See pp 116166.Google Scholar
24. Blair, D. G.; Resonant bar detectors. in The Detection of Gravity Waves. Blair, D. G. (ed.) Cambridge Univ. Press, Cambridge (1991). see pp 7398.Google Scholar
25. Roszhart, T. V.; The effect of thermoelastic friction on the Q of micromachined silicon resonators. in IEEE Sensor and Actuator Workshop.Hilton Head Island, SC (1990). see pp. 1316.Google Scholar
26. Zener, C.; Internal friction in solids: theory of internal friction in reeds). Phys. Rev. 52, 230 (1937).Google Scholar
27. Zener, C.; Internal friction in solids II: general theory of thermoelastic internal friction. Phys. Rev. 53, 90 (1938).Google Scholar
28. Randall, Roce, and , Zener; Intercrystalline thermal currents as a source of internal friction. Phys. Rev. 56, 343 (1939).Google Scholar
29. Pitcher, R. J. and Foulds, K. W. H.; Optothermal drive of silicon resonators: the influence of surface coatings. Sensors and Actuators A21–A23, 387390 (1990).Google Scholar
30. Langdon, R. M. and Dowe, D. L.; Photoacoustic oscillator sensors. SPIE vol. 798; Fiber Optic Sensors II (1987). see pp. 8693.Google Scholar
31. Zhange, L. M. Uttamchandani, D., and Culshaw, B.; Excitation of silicon microresonators using short optical pulses. Sensors and Actuators A21–A23, 391393 (1990).Google Scholar
32. Buser, R. A. and Rooij, N. F. De; Very high-Q resonators in monocrystalline silicon. Sensors and Actuators A21–A23, 323327 (1990).Google Scholar
33. Zook, J. D. Burns, D. W. H. Guckel, Sniegowski, J. J. Engelstad, R. L. and Feng, Z.; Characteristics of polysilicon resonant microbeams. Sensors and Actuators A35, 51–19 (1992).Google Scholar
34. Jaklevic, R. C. Lambe, J., Silver, A. H. and Mercereau, J. E.; Quantum interference effects in Josephson tunneling. Phys. Rev. Lett. 12, 159160 (1964).Google Scholar
35. Clarke, J.; SQUIDs: principles, noise, and applications, in Superconducting Devices. Ruggiero, S. T. and Rudman, D. A. (eds), Academic Press, NY (1990). see pp 51101.Google Scholar
36. Tesche, C. D. and Clarke, J.; dc SQUID: noise and optimization. J. Low Temp. Phys. 29, 301331 (1977).Google Scholar
37. Bruines, J. J. P. Waal, V. J. de, and Mooj, J. E.; Comment on “dc SQUID noise and optimization” by Tesche and Clarke. J. Low Temp. Phys. 46, 382396 (1982).CrossRefGoogle Scholar
38. Waal, V. J. de, Schrijner, P., and Llurba, R.; Simulation and optimization of a dc SQUID with finite capacitance. J. Low Temp. Phys. 54, 215232 (1984).Google Scholar
39. Smythe, W. R.; Static and Dynamic Electricity (third edition). McGraw-Hill, New York (1968). see pp. 339340.Google Scholar
40. Kent, A. D. Shar, T. M. Molnar, S. von, and Awschalom, D. D.; Growth of high aspect-ratio nanometer-scale magnets with chemical vapor deposit tunneling microscopy. Science 262, 12491252 (1993).Google Scholar
41. Rugar, D., Mamin, H.J., and Guethner, P.; Improved fiber-optic interferometer for atomic force microscopy. Appl. Phys. Lett. 55, 25882590 (1989).Google Scholar
42. Rugar, D. and Grutter, P.; Mechanical parametric amplification and thermomechanical noise squeezing. Phys. Rev. Lett. 67, 699702 (1989).Google Scholar
43. Wooters, W. K. and Zurek, W. H.; A single quantum cannot be cloned. Nature 299, 802803 (1982).Google Scholar
44. Robinson, B., Thomann, H., Beth, A. H. Fajer, P., and Dalton, L.; The phenomenon of magnetic resonance: theoretical considerations. in EPR and Advanced EPR Studies of Biological Systems, Dalton, L. R. (ed.), CRC Press, Boca Raton (1985). see pp. 12108.Google Scholar
45. Robinson, B., Thomann, H., Beth, A. H. Fajer, P., and Dalton, L.; The application of EPR techniques to the study of DNA. in EPR and Advanced EPR Studies of Biological Systems, Dalton, L. R. (ed.), CRC Press, Boca Raton, (1985). see pp. 296301.Google Scholar
46. Robinson, B. H. Haas, D. A. and Mailer, C.; Molecular dynamics in liquids: spin-lattice relaxation of nitroxide spin labels. Science 263, 490493 (1994).Google Scholar
47. Garstens, M. A. and Kaplan, J. I.; Low field magnetic resonance. Phys. Rev. 99, 459463 (1955).Google Scholar