Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-14T02:32:49.181Z Has data issue: false hasContentIssue false

Cerium Doped Bismuth Antimony

Published online by Cambridge University Press:  02 August 2012

Kevin C. Lukas
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, U.S.A.
Huaizhou Zhao
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, U.S.A.
Ryan L. Stillwell
Affiliation:
National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32306-4005, USA
Zhifeng Ren
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, U.S.A.
Cyril P. Opeil
Affiliation:
Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, U.S.A.
Get access

Abstract

Bismuth-Antimony alloys have been shown to have high ZT values below room temperature, especially for single crystals. For polycrystalline samples, impurity doping and magnetic field have proven to be powerful tools in the search for understanding and improving thermoelectric performance. Nanopolycrystalline Bi0.88Sb0.12 doped with 0.05, 0.5 and 3 % Ce were prepared by ball milling and dc hot pressing techniques. Electrical resistivity, Seebeck coefficient, thermal conductivity, carrier concentration, mobility, and magnetization are measured in a temperature range of 5-350 K and in magnetic fields up to 9 Tesla. The effects of Ce doping on the thermoelectric properties of Bi0.88Sb0.12 in zero magnetic field are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smith, G.E., Wolfe, R., J. Appl. Phys. 33, 841, (1962).10.1063/1.1777178Google Scholar
2. Wolfe, R., Smith, G.E., Bell Tel. Laboratories 5, (1962).Google Scholar
3. Lenoir, B., Demouge, A., Perrin, D., Scherrer, H., Scherrer, S., Cassart, M., Michenaud, J.P., J. Phys. Chem. Solids 56, 99, (1995).10.1016/0022-3697(94)00142-1Google Scholar
4. Kitagawa, H., Noguchi, H., Kiyabu, T., Itoh, M., Noda, Y.J., Phys. and Chem. of Solids 65, 1223, (2004).10.1016/j.jpcs.2004.01.010Google Scholar
5. Devaux, X., Brochin, F., Martin-Lopez, R., Scherrer, H., J. Phys. Chem. Solids 63, 119, (2002).10.1016/S0022-3697(01)00087-7Google Scholar
6. Martin-Lopez, R., Dauscher, A., Scherrer, H., Hejtmanek, J., Kenzari, H., Lenoir, B., Appl. Phys. A 68, 597, (1999).10.1007/s003390050947Google Scholar
7. Sharp, J.W., Volckmann, E.H., Goldsmid, H.J., Phys. Stat. Sol. (a) 185, 2, 257, (2001).10.1002/1521-396X(200106)185:2<257::AID-PSSA257>3.0.CO;2-D3.0.CO;2-D>Google Scholar
8. Belaya, A.D., Zayakin, S.A., Zemskov, V.S., J. Adv. Mater. 2, 158, (1994).Google Scholar
9. Ivanov, G.A., Kulikov, V.A., Naletov, V.L., Panarin, A.F., Regel, A.R., Sov. Phys. Semicond. 7, 1134, (1973).Google Scholar
10. Hor, Y.S., Cava, R.J., J. Alloys and Comp. 479, 368, (2009).10.1016/j.jallcom.2008.12.071Google Scholar
11. Lukas, K.C., Zhao, H., Modic, K., Ren, Z.F., Opeil, C.P., J. Materials Sci. DOI:10.1007/s10853-012-6463-6, (2012)Google Scholar
12. Sengupta, M., Bhattacharya, R., J. Phys Chem. Solids 46, 1, 916, (1985).10.1016/0022-3697(85)90188-XGoogle Scholar
13. Mikitik, G.P., Sharlai, Y.V., Low Temp. Physics 26, 1, 3946, (2000).10.1063/1.593860Google Scholar
14. Hattori, T.J., J. Phys. Soc. Japan 29, 5, 1224, (1970).10.1143/JPSJ.29.1224Google Scholar
15. Sakai, T., Adachi, G., Shiokawa, J., Mater. Research Bulletin 15, 7, 10011010, (1980).10.1016/0025-5408(80)90226-3Google Scholar