Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:29:51.604Z Has data issue: false hasContentIssue false

Ceramic Thin Films for High Integration Density Capacitor Applications

Published online by Cambridge University Press:  03 March 2011

Dan Taroata
Affiliation:
Siemens AG, Corporate Technology - Global Technology Field Organic Electronics Guenter-Scharowsky-Str. 1, 91054 Erlangen, Germany Technische Universität Dresden, Institute for Semiconductor and Microsystems Technology 01062 Dresden,Germany
Tarik A. Cheema
Affiliation:
Technische Universität Braunschweig, Institute of Particle Technology Volkmaroder Str. 5, 38104 Braunschweig, Germany
Wolf-Joachim Fischer
Affiliation:
Technische Universität Dresden, Institute for Semiconductor and Microsystems Technology 01062 Dresden,Germany
Georg Garnweitner
Affiliation:
Technische Universität Braunschweig, Institute of Particle Technology Volkmaroder Str. 5, 38104 Braunschweig, Germany
Guenter Schmid
Affiliation:
Siemens AG, Corporate Technology - Global Technology Field Organic Electronics Guenter-Scharowsky-Str. 1, 91054 Erlangen, Germany
Get access

Abstract

We report a novel concept for the direct integration of capacitors in printed circuit boards using ultra-small BaTiO3 and ZrO2 nanoparticles prepared by a chemical method. Electrical properties comparable to surface mount ceramic capacitors were achieved by proper processing of the nanoparticles, achieving a device-yield of >90% under research environment. The loss factor of the presented integrated capacitors does not exceed 0.05 independent of frequency, capacitor’s electrode area or applied bias voltage.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sigman, J., Brennecka, G.L., Clem, P.G. and Tuttle, B.A., J. Am. Ceram. Soc. 91, 1851 (2008).Google Scholar
2. Roest, A., Mauczok, R., Reimann, K., van Leuken-Peters, L. and Klee, M., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 (3), 425428 (2009).Google Scholar
3. Brennecka, G.L. and Tuttle, B.A., J. Mater. Res. 22 (10), 28682874 (2007).Google Scholar
4. Brennecka, G.L., Parish, C.M., Tuttle, B.A. and Brewer, L.N., J. Mater. Res. 23 (1), 176181 (2008).Google Scholar
5. Vehkamäki, M., Hatanpää, T., Ritala, M., Leskelä, M., Väyrynen, S. and Rauhala, E., Chem. Vap. Deposition 13, 239246 (2007).Google Scholar
6. Li, G.Q., Lai, P.T., Zeng, S.H., Huang, M.Q. and Liu, B.Y., Appl. Phys. Lett. 66 (18), 24362438 (1995).Google Scholar
7. Raj, P.M., Balaraman, D., Abothu, I.R., Yoon, C., Kang, N.K. and Tummala, R.R., IEEE Trans. Compon. Packag. Technol. 30 (4), 585594 (2007).Google Scholar
8. Niederberger, M., Garnweitner, G., Pinna, N. and Antonietti, M.J., Am. Chem. Soc. 126 (29), 91209126 (2004).Google Scholar
9. Garnweitner, G., Goldenberg, L.M., Sakhno, O.V., Antonietti, M., Niederberger, M. and Stumpe, J., Small 3 (9), 16261632 (2007).Google Scholar
10. Kim, P., Jones, S.C., Hotchkiss, P.J., Haddock, J.N., Kippelen, B., Marder, S.R. and Perry, J.W., Adv. Mater. 19, 10011005 (2007).Google Scholar
11. Halik, M., Klauk, H., Zschieschang, U., Schmid, G., Dehm, C., Schütz, M., Maisch, S., Effenberger, F., Brunnbauer, M. and Stellacci, F., Nature 431, 963966 (2004).Google Scholar