Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T15:20:28.427Z Has data issue: false hasContentIssue false

Cellular Automaton Modeling of Alloy Solidification Using Local Anisotropy Rules

Published online by Cambridge University Press:  10 February 2011

R. E. Napolitano
Affiliation:
Metallurgy Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899
T. H. Sanders Jr.
Affiliation:
Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332
Get access

Abstract

The evolution of dendritic morphology is simulated for a binary alloy using a two-dimensional cellular automaton growth algorithm. Solute diffusion is modeled with an alternate-direction implicit finite difference technique. Interface curvature and kinetic anisotropy are implemented through configurational terms which are incorporated into the growth potential used by the automaton. The weighting of the anisotropy term is explored and shown to be essential for overcoming grid-induced anisotropy, permitting more realistic development of dendritic morphologies. Dendritic structures are generated for both uniform and directional cooling conditions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kobayashi, R.; Physica D, 63 (1993) 410423.Google Scholar
2 Wheeler, A.A., Murray, B.T., and Schaefer, R.J.; Physica D, 66 (1993) 243.Google Scholar
3 Wang, S.L., Sekerka, R.F., Wheeler, A.A., Murray, B.T., Coriell, S.R., Braun, R.J., and McFadden, G.B.; Physica D, 69 (1993) 189200.Google Scholar
4 Wheeler, A.A., Boettinger, W.J., and McFadden, G.B.; Physical Review E, 47(1993)1893.Google Scholar
5 Warren, J.A. and Boettinger, W.J.; Acta Metall. Mater., 43 (1995) 689703.Google Scholar
6 Boettinger, W.J. and Warren, J.A.; Met. Mater. Trans., 27A (1996) 657669.Google Scholar
7 Packard, N.H.; Proceedings of the First Int. Symposium for Science on Form, (Katoh, Y., Takaki, R., Toriwaki, J., and Ishizaka, S., Eds.), KTK Scientific Publishers (1986).Google Scholar
8 Brown, S.G.R. and Spittle, J.A.; Scripta Metallurgica, 27 (1992) 15991603.Google Scholar
9 Brown, S.G.R., Wiliams, T., and Spittle, J.A.; Acta Metall. Mater., 42 (1994) 28932898.Google Scholar
10 Rappaz, M. and Gandin, Ch.-A.; Acta Metall. Mater., 41 (1993) 345360.Google Scholar
11 Gandin, Ch.A., Rappaz, M., and Tintillier, R.; Met. Trans., 24A (1993) 467479.Google Scholar
12 Gandin, Ch.A., Rappaz, M., and Tintillier, R.; Met. Trans., 25A (1994) 629635.Google Scholar
13 Rappaz, M., Gandin, Ch.A., and Sasikurnar, R.; Acta Metall. Mater., 42 (1994) 23652374.Google Scholar
14 Gandin, Ch.-A. and Rappaz, M.; Acta Metall. Mater., 42 (1994) 22332246.Google Scholar
15 Gandin, Ch.-A., Charbon, Ch., and Rappaz, M., ISJJ International, 35 (1995) 651657.Google Scholar
16 Napolitano, R.E. and Sanders, T.H. Jr., Proc. Int. Symp. on Processing of Metal and Advanced Materials: Modeling, Design, and Properties; Li, B.Q., E d., TMS (1998) 6374.Google Scholar
17 Napolitano, R.E. and Sanders, T.H. Jr., Proc. Third Pacific Rim International Conference on Advanced Materials and Processing; TMS (1998).Google Scholar
18 Jackson, K.A., Journal of Crystal Growth, 3/4 (1968) 507517. Figure 4. Later stage of growth for the simulation shown in Figure 3b. Domain = 6 × 6 mm. Mesh = 400 × 400Google Scholar