Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:58:56.446Z Has data issue: false hasContentIssue false

Cell-by-Cell Construction of Living Tissue

Published online by Cambridge University Press:  17 March 2011

Bradley R. Ringeisen
Affiliation:
Alberto Pique, Douglas Chrisey 4555 Overlook Ave. SW, Naval Research Laboratory, Codes 6372 and 6115, Washington, DC 20375
Heungsoo Kim
Affiliation:
Alberto Pique, Douglas Chrisey 4555 Overlook Ave. SW, Naval Research Laboratory, Codes 6372 and 6115, Washington, DC 20375
H. Daniel Young
Affiliation:
Alberto Pique, Douglas Chrisey 4555 Overlook Ave. SW, Naval Research Laboratory, Codes 6372 and 6115, Washington, DC 20375
Barry J. Spargo
Affiliation:
Alberto Pique, Douglas Chrisey 4555 Overlook Ave. SW, Naval Research Laboratory, Codes 6372 and 6115, Washington, DC 20375
R.C.Y. Auyeung
Affiliation:
Alberto Pique, Douglas Chrisey 4555 Overlook Ave. SW, Naval Research Laboratory, Codes 6372 and 6115, Washington, DC 20375
Peter K. Wu
Affiliation:
Southern Oregon University, Ashland, WA
Get access

Abstract

This paper outlines investigations into a potentially revolutionary approach to tissue engineering. Tissue is a complex three-dimensional structure that contains many different biomaterials such as cells, proteins, and extracellular matrix molecules that are ordered in a very precise way to serve specific functions. In order to replicate such complex structure, it is necessary to have a tool that could deposit all these materials in an accurate and controlled fashion. Most methods to fabricate living three-dimensional structures involve techniques to engineer biocompatible and biodegradable scaffolding, which is then seeded with living cells to form tissue. This scaffolding gives the tissue needed support, but the resulting tissue inherently has no microscopic cellular structure because cells are injected into the scaffolding where they adhere at random. We have developed a novel technique that actually engineers tissue, not scaffolding, that includes the mesoscopic cellular structure inherent in natural tissues. This approach uses a laser-based rapid prototyping system known as matrix assisted pulsed laser evaporation direct write (MAPLE DW) to construct living tissue cell-by-cell. This manuscript details our efforts to rapidly and reproducibly fabricate complex 2D and 3D tissue structures with MAPLE-DW by placing different cells and biomaterials accurately and adherently on the mesoscopic scale

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Chrisey, D. B., Science, 289, (2000) 879881.Google Scholar
2 Chrisey, D. B., Pique, A., Modi, R., Wu, H. D., Auyeung, R. C. Y., Young, H. D., Chung, R., Appl. Surf. Sci., 6683 (2000) 18.Google Scholar
3 Fitz-Gerald, J. M., Pique, A., Chrisey, D. B., Rack, P. D., Zeleznik, M., Auyeung, R. C. Y., Lakeou, S., Appl. Phys. Lett., 76 (2000) 1386.Google Scholar
4 Young, D., Wu, H. D., Auyeung, R. C. Y, Modi, R., Fitz-Gerald, J., Pique, A., Chrisey, D. B., Atanassova, P., Kodas, T., J. Mater. Res., 16 (2001) 17201725.Google Scholar
5 Langer, R.; Vacanti, J.P. Science, 260 (1993) 920926.Google Scholar
6 Lysaght, M.J. and Reyes, J. Tissue Eng., 7 (2001) 485–93Google Scholar
7 Giaever, I.; Keese, C.M. Nature, 366 (1993) 591592.Google Scholar
8 Fisherman, H.A.; Orwar, O.; Allbritton, N.L.; Modi, B.P.; Shear, J.B.; Scheller, R.H.; Zare, R.N. Anal. Chem., 68 (1996) 11811186.Google Scholar
9 Spargo, BJ, et al. Proc Natl Acad Sci USA, 91 (1994) 1107011074.Google Scholar
10 Wilbur, JL, Kumar, A, Biebuyck, HA, Kim, E, Whitesides, GM. Nanotechnology, 7 (1996) 452457.Google Scholar
11 Kane, RS, Takayama, S, Ostuni, E, Ingber, DE, Whitesides, GM. Biomaterials, 20 (1999) 23632376.Google Scholar
12 Ito, Y. Biomaterials, 20 (1999) 23332342.Google Scholar
13 Folch, A, Jo, BH, Hurtado, O, Beebe, DJ, Toner, M. J. Biomed. Mat. Res., 52 (2000) 346353.Google Scholar
14 Folch, A and Toner, M. Ann. Rev. Biomed. Eng., 2 (2000) 227.Google Scholar
15 Takayam, S, et al. Proc Nat. Acad. Sci., 96 (1999) 55455548.Google Scholar
16 Jung, D.R., et al. Critical Reviews in Biotechnology, 21 (2001) 111154.Google Scholar
17 Temenoff, J.S. and Mikos, A.G. Biomaterials, 21 (2000) 431.Google Scholar
18 Solchaga, L.A.; Dennis, J.E.; Goldberg, V.M.; Caplan, A.I. J. Orthop. Res, 17 (1999) 205213..Google Scholar
19 Athanasiou, K.; Krovick, D.; Schenck, R. Tissue Eng., 3 (1997) 363373.Google Scholar
20 Caplan, A.I. and Bruder, S.P. In: Lanza, R.P.; Chick, W.L.; Langer, R. eds. Principles of Tissue Engineering. Springer, NY: R.G. Landes Co., 1996, pp. 599618.Google Scholar
21 Caplan, A.I.; Fink, D.J; Bruder, S.P.; Young, R.G.; Butler, D.L. In: Patrick, C.W. Jr.; Mikos, A.G.; McIntire, L.V. eds. Frontiers in Tissue Engineering. NY: Elsevier Science, 1998, pp. 471480.Google Scholar
22 Asonuma, K.; Gilbert, J.C.; Stein, J.E.; Takeda, T.; Vacanti, J.P. J. Pediatr. Surg. 27 (1992) 298301.Google Scholar
23 Vacanti, J.P. Cell Transplatation, 2 (1993) 409410.Google Scholar
24 Kapur, R.; Spargo, B.J.; Chen, M.; Calvert, J.M.; Rudolph, A.S. J. Biomed. Mat. Res., 33 (1996) 205216.Google Scholar
25 Lee, K.Y. and Mooney, D.J. Chem. Rev., 101 (2001) 18691879.Google Scholar
26 Rennekampff, H.O.; Kiessig, V.; Hansbrough, J.F. J Surg. Res., 62 (1996) 288–95Google Scholar
27 Horch, R.E.; Debus, M.; Wagner, G.; Stark, G.B. Tissue Eng., 6 (2000) 5367 Google Scholar
28 Voigt, M.; Schauer, M.; Schaefer, D.J.; Andree, C.; Horch, R.; Stark, G.B. Tissue Eng., 5 (1999) 563–72Google Scholar
29 Zeltinger, J.; Landeen, L.K.; Alexander, H.G.; Kidd, I.D.; Sibanda, B. Tissue Eng., 7 (2001) 922 Google Scholar
30 Takezawa, T.; Inoue, M.; Aoki, S.; Sekiguchi, M.; Wada, K.; Anazawa, H. Hanai, N. Tissue Eng., 6 (2000) 641–50.Google Scholar
31 DeBoer, C., Journal of Imaging Science and Technology, 42 (1998) 6369.Google Scholar
32 Kantor, Z., Toth, Z., Szorenyi, T., Appl. Phys. A. 54 (1002) 170175.Google Scholar
33 Zergioti, I., Mailis, S., Vainos, N. A., Papakonstantinou, P., Kalpouzos, C., Grigoropoulos, C. P., Fotakis, C., Appl. Phys. A, 66 (1998) 579582.Google Scholar
34 Chrisey, D. B., Pique, A., Fitz-Gerald, J., Auyeung, R. C. Y., McGill, R. A., Wu, H. D., Duignan, M., Applied Surface Science, 154–155 (2000) 593600.Google Scholar
35 Chrisey, D. B., Pique, A., Modi, R., Wu, H. D., Auyeung, R. C. Y., Young, H. D., Chung, R., Appl. Surf. Sci., 6683 (2000) 18.Google Scholar
36 Chrisey, D. B., Science, 289 (2000) 879881.Google Scholar
37 Pique, A., Chrisey, D. B., Auyeung, R. C. Y., Fitz-Gerald, J., Wu, H. D., McGill, R. A., Lakeou, S., Wu, P. K., Nguyen, V., Duignan, M., Appl. Phys. A [Suppl.], (1999) S279–S284.Google Scholar
38 Fitz-Gerald, J. M., Pique, A., Chrisey, D. B., Rack, P. D., Zeleznik, M., Auyeung, R. C. Y., Lakeou, S., Applied Physics Letters, 76 (2000) 1386.Google Scholar
39 Ringeisen, B.R.; et al. Proceedings of the Fourth International Conference on Modeling and Simulation of Microsystems, Hilton Head Island, SC, March 2001.Google Scholar
40 Ringeisen, B.R.; et al. Biomaterials, to be published January 2002.Google Scholar
41 Ringeisen, B.R.; et al. American Biotechnology Laboratory, May 2001.Google Scholar
42 Chrisey, D. B., Piqué, A, Fitz-Gerald, J., Ringeisen, B., Modi, R., Laser Focus World, 36 (2000) 113.Google Scholar
43 Young, D., Auyeung, R.C.Y., Pique, A., Chrisey, D.B., and Dlott, D.D., App. Phys. Lett. 78, 3169 (2001).Google Scholar