Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T20:50:18.305Z Has data issue: false hasContentIssue false

Cell Specific Targeting of Multifunctional γ-Fe2O3 Nanoparticles Through Surface Binding of dsDNA

Published online by Cambridge University Press:  26 February 2011

Wolfgang Tremel
Affiliation:
[email protected], Johannes Gutenberg-Universität Mainz, Institut für Anorganische Chemie und Analytische Chemie, Duesbergweg 10-14, Mainz, 55099, Germany, +49 6131 39-25135, +49 6131 39-25605
Mohammed Ibrahim Shukoor
Affiliation:
[email protected], Johannes Gutenberg-Universität, Institut für Anorganische Chemie und Analytische Chemie, Duesbergweg 10-14, Mainz, 55099, Germany
Filipe Natalio
Affiliation:
[email protected], Johannes Gutenberg-Universität, Institut für Biochemie und Pathobiochemie, Duesbergweg 6, Mainz, 55099, Germany
Muhammad Nawaz Tahir
Affiliation:
[email protected], Johannes Gutenberg-Universität, Institut für Anorganische Chemie und Analytische Chemie, Duesbergweg 10-14, Mainz, 55099, Germany
Werner E. G. Müller
Affiliation:
[email protected], Johannes Gutenberg-Universität, Institut für Biochemie und Pathobiochemie, Duesbergweg 6, Mainz, 55099, Germany
Heinz Christoph Schröder
Affiliation:
[email protected], Johannes Gutenberg-Universität, Institut für Biochemie und Pathobiochemie, Duesbergweg 6, Mainz, 55099, Germany
Get access

Abstract

The immobilization of polyinosinic-polycytidylic acid [poly(IC)] on ã-Fe2O3 maghemite nanoparticles via the phosphor-amidate route using a multifunctional polymer is reported. The dsRNA coupled nanoparticles were used to visualize the Toll-like (TLR3) receptors at the cell surface. The presence of TLR3 was demonstrated independently in the Caki-1 cell line by RT-PCR and immunostaining techniques

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grossman, H. L., Myers, W. R., Vreeland, V. J., Bruehl, R., Alper, M. D., Bertozzi, C. R., Clarke, J., Proc. Natl. Acad. Sci. USA 101, 129 (2004).10.1073/pnas.0307128101Google Scholar
2. Lange, J., Kotitz, R., Haller, A., Trahms, L., Semmler, W., Weitschies, W., J. Magn. Magn. Mater. 252, 381 (2002).10.1016/S0304-8853(02)00657-1Google Scholar
3. Kirchner, C., Liedl, T., Kudera, S., Pellegrino, T., Javier, A. M., Gaub, H. E., Stolzle, S., Fertig, N., Parak, W. J., Nano Lett. 5, 331 (2005).10.1021/nl047996mGoogle Scholar
4. Weissleder, R., Kelly, K., Sun, E. Y., Shtatland, T., Josephson, L., Nat. Biotechnol. 23, 1418 (2005).10.1038/nbt1159Google Scholar
5. Shukoor, M. I., Natalio, F., Ksenofontov, V., Tahir, M. N., Eberhardt, M., Theato, P., Schröder, H. C., Müller, W. E. G., Tremel, W., Small 3, 1374 (2007).Google Scholar
6. Hyeon, T., Lee, S. S., Park, J., Chung, Y., Na, H. B., J. Am. Chem. Soc. 123, 12798 (2001).10.1021/ja016812sGoogle Scholar
7. Tahir, M. N., Eberhardt, M., Theato, P., Faiß, S., Janshoff, A., Gorelik, T., Kolb, U., Tremel, W., Angew. Chem.Int. Ed. 45, 908 (2006).10.1002/anie.200502517Google Scholar
8.(a) Chu, B. C. F., Wahl, G. M., Orgel, L. E., Nucl. Acids Res. 11, 6513 (1983).10.1093/nar/11.18.6513Google Scholar
9. Glube, N., Closs, E., Langguth, P., Mol. Pharmaceut. 4, 160 (2007).10.1021/mp060073aGoogle Scholar
10. Sato, A., Iizuka, M., Nakagomi, O., Suzuki, M., Horie, Y., Konno, S., Hirasawa, F., Sasaki, K., Shindo, K., Watanabe, S., J. Gastroenterology and Hepatology 21, 521 (2006).10.1111/j.1440-1746.2005.03977.xGoogle Scholar
11. Roehm, N., Rodgers, G. H., Hatfield, S. M., Glasebrook, A. L., J. Immunol. Methods 142, 257 (1991).10.1016/0022-1759(91)90114-UGoogle Scholar