Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T02:38:15.994Z Has data issue: false hasContentIssue false

CdTe and CdZnTe Room-Temperature X-Ray and Gamma Ray Detectors and Imaging Systems

Published online by Cambridge University Press:  10 February 2011

Y. Eisen
Affiliation:
Soreq NRC, Yavne, Israel, 81800
A. Shor
Affiliation:
Soreq NRC, Yavne, Israel, 81800
Get access

Abstract

CdTe and CdZnTe X-ray and gamma ray detectors in the form of single elements or as monolithic segmented arrays have been shown to be useful in imaging systems utilized in medical, research or industrial applications. These detectors possess inherently better energy resolution than scintillators coupled to either photodiodes or photomultipliers, and they may lead to compact imaging systems or to imaging systems of enhanced spatial resolution and better contrast resolution. Photopeak efficiencies of these detectors is greatly affected by relatively low hole mobility-lifetime product and therefore continuing efforts are still underway to improve the characteristics of both CdTe and CdZnTe materials in order to achieve reproducible detectors with higher photopeak efficiencies for either low or high energy gamma rays.

The following paper is divided into three parts: The first part compares the characteristics of planar CdTe and CdZnTe single elements nuclear detectors containing metal contacts. Characteristics include: Charge collection efficiencies for both electrons and holes indicated by the mobility-lifetime product, energy resolutions, leakage currents and robustness in field use. The second part describes excellent spectroscopic results using a lcm thick CdZnTe monolithic segmented pad detector array. This part also compares spectra for various gamma energies obtained by this segmented detector to that of a 1 cm 3 detector acting as a single element planar detector. The third part discusses the characteristics of a new generation nuclear gamma camera for medical diagnostics based on room-temperature CdTe and CdZnTe spectrometers and its advantages over an Anger type scintillating nuclear camera.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Raiskin, E. and Butler, J. F., IEEE Trans. Nucl. Sci. NS–35, 82 (1988)Google Scholar
2) Johnson, C. J., Eissler, E. E., Cameron, S. E., Kong, Y., Fan, S., Jovanovic, S. and Lynn, K.G., Material Research Society, Symposium Proc. 302, 463 (1993)Google Scholar
3) Hecht, K., Zeits. Phys. 77, 235(1932)Google Scholar
4) Richter, M. and Siffert, P. Nucl. Instr. and Meth. A322, 529 (1992)Google Scholar
5) Eisen, Y. and Horovitz, Y. Nucl. Instr. and Meth. A353, 60 (1994)Google Scholar
6) Jones, L. T. and Woolam, P. B. Nucl. Instr. and Meth. 124, 591 (1975)Google Scholar
7) Ivanov, V.I., Garbusin, V., Dorogov, P.G., Loutchansky, A.E. and Kondrashov, V.V., IEEE Tran. Nucl. Sci. NS42, 258 (1995)Google Scholar
8) Gerrish, V. M. and Devore, T.M., Private communicationGoogle Scholar
9) Malm, H. L., Canali, C., Mayer, J. W., Nicolet, M. A., Zanio, K. and Akutagawa, W., Appl. Phys. Lett. 26, 344 (1975)Google Scholar
10) Frisch, O., British Atomic Energy Report BR–49 (1944)Google Scholar
11) Luke, P. N., IEEE Tran. Nucl. Sci. NS–42, 207 (1995)Google Scholar
12) Barrett, H. H., Eskin, J. D. and Barber, H. B., Phys. Rev. Lett. 75, 156 (1995)Google Scholar
13) Eskin, J. D., Barber, H. B. and Barrett, H. H., SPIE 2859, 46 (1996)Google Scholar
14) Dabrowski, A. J., Chwaszczewska, J., Iwanczyk, J., Triboulet, R. and Marfaing, Y., IEEE Tran. Nucl. Sci. NS23, 131 (1976)Google Scholar
15) Siffert, P., Nucl. Instr. and Meth. 150, 1 (1978)Google Scholar
16) James, R. B., Schelinger, T. E., Lund, J. and Schieber, M., in Semiconductors for Room Temperature Nuclear Detector Applications (Academic Press, 1996) p. 336, eds. Schelinger, T. E. and James, R. B..Google Scholar
17) Eisen, Y. and Polak, E., Material Research Society, Symposium Proc. 302, 487 (1993)Google Scholar
18) Burshstein, Z., Jayatirtha, H. N., Burger, A., Butler, J. F., Apotovsky, B. and Doty, F. P., Appl. Phys. Lett. 63, 102 (1993)Google Scholar
19) eV Products, Saxonburg, PA, USAGoogle Scholar
20) Iwase, Y., Funaki, M., Onuzuka, A. and Ohmori, M., Nucl. Instr. and Meth. A322, 628 (1992)Google Scholar
21) Polichar, R., Schirato, R. and Reed, J., Nucl. Instr. and Meth. A353, 349 (1994)Google Scholar
22) Barber, H. B., Augustine, F. L., Barrett, H. H., Dereniak, D. L., Matherson, K. L., Meyers, T. J., Perry, D. L., Venzon, J. E., Wolfenden, J. M., and Young, E. T., Nucl. Instr. and Meth. A353, 361 (1994)Google Scholar
23) Doty, F. P., Barber, H. B., Augustine, F. L., Butler, J. F., Apotovsky, B.A., Young, E. T. and Hamilton, W., Nucl. Instr. and Meth. A353, 356 (1994)Google Scholar
24) Anger, H. O., in: Instrumentation in Nuclear Medicine, Vol 1 edt. Hine, G. J. (Academic Press, New York, NY, 1967)Google Scholar
25) Eisen, Y., Shor, A., Gilath, C., Tsabarim, M., Chouraqui, P., Hellman, C. and Lubin, E., Nucl. Instr. and Meth. A380, 474 (1996)Google Scholar