Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:28:47.306Z Has data issue: false hasContentIssue false

Cavity Formation in Simox Structures

Published online by Cambridge University Press:  28 February 2011

M. K. El-Ghor
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
S. J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
T. P. Sjoreen
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
C. W. White
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
J. Narayan
Affiliation:
North Carolina State University, Raleigh, NC 27650
Get access

Abstract

We have investigated the effect of different implantation parameters on cavity formation in the top Si layer in SIMOX structures. Cavities were found to occur in the temperature range between 600 and 675°C. The nucleation and growth kinetics of cavities could be reasonably explained using classical theory, and showed a behavior similar to that of irradiation-induced voids in metals. A similar dependence on instantaneous current and beam scanning frequency was also observed. Post implantation annealing at a temperature of 1150°C for 80 min showed cavities starting to facet, and a threading dislocation density of < 105 cm2. SIMOX structures formed in (111) silicon are also presented.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Jaussaud, C., Stoemenos, J., Margail, J., Dupuy, M., Blanchard, B., and Bruel, M., Appl. Phys. Lett. 46, 1064 (1985).Google Scholar
2 Mao, B.-Y., Chang, P.-H., Lam, H. W., Shen, B. W., and Keenan, J. A., Appl, Phys. Lett. 48, 794 (1986).CrossRefGoogle Scholar
3 Mogro-Campero, A., Love, R. P., Lewis, N., Hall, E. L., and McConnell, M. D., J. Appl. Phys. 60, 2103 (1986).Google Scholar
4 Celler, G. K., Hemment, P. L. F., West, K. W., and Gibson, J. M., Appl. Phys. Lett. 48, 532 (1986).CrossRefGoogle Scholar
5 van Ommen, A. H., Lighart, H. J., Politiek, J., and Viegers, M. P. A., Mat. Res. Soc. Symp. Proc. 93, 119 (1987).CrossRefGoogle Scholar
6 Holland, O. W., Sjoreen, T. P., Fathy, D., and Narayan, J., Appl. Phys. Lett. 45, 1081 (1985).CrossRefGoogle Scholar
7 Stoemenos, J., Margail, J., Jaussaud, C., Dupuy, M., and Bruel, M., Appl. Phys. Lett. 48, 1470 (1986).CrossRefGoogle Scholar
8 van Ommen, A. H., Koek, B. H., and Viegers, M. P. A., Appl. Phys. Lett. 49, 1062 (1986).CrossRefGoogle Scholar
9 El-Ghor, M. K., Pennycook, S. J., Sjoreen, T. P., and Narayan, J., Mat. Res. Soc. Symp. Proc. 74, 591 (1987).Google Scholar
10 Maszara, W. P., Mat. Res. Soc. Symp. Proc. 93, 143 (1987).Google Scholar
11 Calder, Ian and MacElwee, P. W., IEEE SOS/SOI Workshop Technology, Oct. (1987).Google Scholar
12 Batstone, J. L., White, A. E., Short, K. T., Gibson, J. M., and Jacobson, D. C., Mat. Res. Soc. Symp. Proc. 74, 597 (1987).Google Scholar
13 Brimhall, J. L., Kissinger, H.E., and Kulcinski, G. L., in Radiation-Induced Voids in Metals, Corbett, J. W. and Ianniello, L. C., Editors, p. 338, National Technical Information Service (C0NF-710601), Washington, D. C. (1972).Google Scholar
14 Harkness, S. D. and Li, C.-Yu, Radiation Damage in Reactor Materials, (Symp. Proc, Vienna, 1969, International Atomic Energy Agency, Vienna, 1969), (STI/PVB/230), Vol. II, p. 189.Google Scholar