Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-07-05T11:34:57.322Z Has data issue: false hasContentIssue false

Cation Ordering in Substituted LiMn2O4 Spinels

Published online by Cambridge University Press:  11 February 2011

P. Strobel
Affiliation:
Laboratoire de Cristallographie CNRS, BP 166, 38042 Grenoble Cedex 9, France
A. Ibarra-Palos
Affiliation:
Laboratoire de Cristallographie CNRS, BP 166, 38042 Grenoble Cedex 9, France
C. Poinsignon
Affiliation:
LEPMI, ENSEEG, BP 75, 38402 Saint-Martin d'Hères Cedex, France
Get access

Abstract

In order to overcome the capacity fading of LiMn2O4 in lithium batteries, various substitutions for Mn have been proposed. The structural implications of substitution in LiMn2-xMxO4 with x = 0.5, i.e. with exactly 1/4 octahedral (16d-site) cations replaced, are investigated here. For this stoichiometry, cationic ordering was known previously for M = Mg and Zn, resulting in a superstructure with primitive cubic symmetry. Given the poor chemical contrast of X-ray diffraction between Mn and Co, Ni or Cu, LiMn1.5M0.5O4 samples were studied by neutron diffraction and IR spectroscopy. Both techniques show the occurence of cationic ordering for M = Ni and Cu, but not for Co or Ga. In the case of M = Zn, further complication due Li/Zn ordering on the tetrahedral (8a) site is well resolved by FTIR. This investigation shows that the main driving force for octahedral cation ordering is the charge difference between Mn and M atoms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thackeray, M. M., J. Ceram. Soc. Amer. 82, 3347 (1999).Google Scholar
2. Broussely, M., Biensan, P., Simon, B., Electrochim. Acta 45, 3 (1999).Google Scholar
3. Tarascon, J. M., Wang, E., Shokoohi, F.K., McKinnon, W.R., Colson, S., J. Electrochem Soc. 138, 2859(1991).Google Scholar
4. Kawai, H., Nagata, M., Tukamoto, H., West, A.R., J. Power Sources 81–82 67 (1999).Google Scholar
5. Blasse, G., Philips Res. Rept. 1 (1964); JCPDS card 32573.Google Scholar
6. Braithwaite, J.S., Catlow, C.R.A., Harding, J.H. and Gale, J.D., Phys. Chem. Chem. Phys. 2 38 (2000).Google Scholar
7. Le Cras, F., Bloch, D., Anne, M. and Strobel, P., Solid State Ionics 89 203 (1996).Google Scholar
8. Strobel, P., Ibarra Palos, A., Le Cras, F., Anne, M., J. Mater. Chem. 10 429 (2000).Google Scholar
9. Joubert, J.C. and Durif, A., C.R. Acad. Sci. Paris 258 4482 (1964); JCPDS card 74–1260.Google Scholar
10. Sears, V.F., AECL Report 8490 (1984).Google Scholar
11. Strobel, P., Poinsignon, C., Ibarra Palos, A. and Anne, M., J. Solid State Chem. (submitted).Google Scholar
12. White, W.B. and DeAngelis, B.A., Spectrochim. Acta 23A 985 (1967).Google Scholar
13. Preudhomme, J., Ann. Chim. (France) 9 31 (1974).Google Scholar
14. Richardson, T.J., Wen, S.J., Striebel, K.A., Ross, P.N. and Cairns, E.J., Mater. Res. Bull. 32 609 (1997).Google Scholar
15. Julien, C., Massot, M., Haro-Poniatowski, E., Nazri, GA., Rougier, A., MRS Proc. 496 415 (1998).Google Scholar
16. Ammundsen, B., Burns, G.R., Islam, M.S., Kanoh, H. and RoziDre, J., J. Phys. Chem. B 103 5175(1999).Google Scholar
17. Allen, G.C. and Paul, M., Appl. Spectrosc. 49 451 (1995).Google Scholar
18. Brabers, V.AM., Phys. Stat. Sol. A 12 629 (1972).Google Scholar
19. Laarj, M., Kacim, S. and Gillot, B., J. Solid State Chem. 125 67 (1996).Google Scholar