Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T09:25:32.202Z Has data issue: false hasContentIssue false

Cation Interdiffusion in GaInP/GaAs Single Quantum Wells

Published online by Cambridge University Press:  10 February 2011

Joseph Micallef
Affiliation:
Department of Microelectronics, University of Malta, Msida MSD 06, Malta
Andrea Brincat
Affiliation:
Department of Microelectronics, University of Malta, Msida MSD 06, Malta
Wai-Chee Shiu
Affiliation:
Department of Mathematics, Hong Kong Baptist University, Waterloo Road, Hong Kong
Get access

Abstract

The effects of cation interdiffusion in Ga0.51In0.49P/GaAs single quantum wells are investigated using an error function distribution to model the compositional profile after interdiffusion. Two interdiffusion conditions are considered: cation only interdiffusion. and dominant cation interdiffusion. For both conditions the fundamental absorption edge exhibits a red shift with interdiffusion, with a large strain build up taking place in the early stages of interdiffusion. In the case of cation only interdiffusion, an abrupt carrier confinement profile is maintained even after significant interdiffusion, with a well width equal to that of the as-grown quantum well. When the interdiffusion takes place on two sublattices. but with the cation interdiffusion dominant, the red shift saturates and then decreases. The model results are consistent with reported experimental results. The effects of the interdiffusion-induced strain on the carrier confinement profile can be of interest for device applications in this material system.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Song, J.-I., Caneau, C., Chough, K.-B., and Hong, W.-P., IEEE Electron Device Lett. 15, 10 (1994).Google Scholar
2. Razeghi, M., Omnes, F., Defour, M.. Maurel, P., Bove, P., Chan, Y.J., and Pavlidis, D.. Semicon. Sci. Technol. 5, 274 (1990).Google Scholar
3. Takamoto, T., Ikeda, E., Kurita, H., and Ohmori, M., Appl. Phys. Lett. 70, 381 (1997).Google Scholar
4. Koyabashi, K., Kawata, S., Gomyo, A., Hino, I., and Suzuki, T., Electron. Lett. 21, 931 (1985).Google Scholar
5. Jelen, C., Slivken, S., Hoff, J., Razeghi, M., and Brown, G.J., Appl. Phys. Lett. 70. 360 (1997).Google Scholar
6. Camras, M.D., Holonyak, N., Jr., Burnham, R.D., Streifer, W., Scifres, D.R., Paoli, T.L., and Lindström, C., J. Appl. Phys. 54, 5637 (1983).Google Scholar
7. Francis, C., Bradley, M.A., Boucaud, P., Julien, F.H., and Razeghi, M., Appl. Phys. Lett. 62, 178 (1993).Google Scholar
8. Thornton, R.L., Ponce, F.A., Anderson, G.B., and Endicott, F.J., Appl. Phys. Lett. 62, 2060 (1993).10.1063/1.109479Google Scholar
9. Schlesinger, T.E. and Kuech, T., Appl. Phys. Lett. 49, 519 (1986).Google Scholar
10. Thornton, R.L., Bour, D.P., Trent, D., Ponce, F.A., Tramontana, S.C., and Endicott, F.J., Appl. Phys. Lett. 65, 2696 (1994).Google Scholar
11. Micallef, J., Li, E.H., and Weiss, B.L., J. Appl. Phys. 73, 7524 (1993).Google Scholar
12. Gunapala, S.D., Levine, B.F., Logan, R.A., Tanbun-Ek, T., and Humphrey, D.A., Appl. Phys. Lett. 57, 1802 (1990).Google Scholar
13. Khotiyal, G.P. and Bhattacharya, P., J. Appl. Phys. 63, 2760 (1988).Google Scholar
14. Pape, I.J., Wa, P. Li Kam, David, J.P.R., Claxton, P.A., and Robson, P.N., Electron. Lett. 24, 1217 (1988).Google Scholar