Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:54:08.876Z Has data issue: false hasContentIssue false

Catalytic decomposition of methane over cerium-doped Ni Catalysts

Published online by Cambridge University Press:  01 February 2011

Oscar A. González
Affiliation:
Miguel A. Valenzuela
Affiliation:
[email protected], Instituto Politécnico Nacional, IPN-ESIQIE, Edificio 8, Tercer piso, Zacatenco, Mexico, D.F., 07738, Mexico
Jin-An Wang
Affiliation:
Get access

Abstract

Si-Ce-O mixed solids (50, 30, 10 and 5, Si/Ce molar ratio) were prepared by using Ce(NO3)3·6H2O as cerium source, tetraethyl orthosilicate (TEOS) as Si precursor and cetyltrimethylammonium bromide (CTABr) as synthesis template. The Ni catalysts were prepared by impregnation of the supports using Ni-acetilacetonate (30 wt.% Ni) as Ni source. The samples were characterized by: X-ray diffraction, temperature-programmed reduction (TPR), and TEM. The nickel reduction degree decreased with the addition of cerium, even in low concentration. When methane was decomposed over all the catalysts only hydrogen was obtained as a gaseous product. The addition of cerium brought about a significant increase in stability compared with Ni/SiO2 catalyst. These preliminary results indicated that CeO2 addition improves the dispersion of Ni particles leading to a better distribution of deposited carbon and increasing the lifetime of Ni particles.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Choudhary, T.V., Aksoylu, E. and Goodman, W., Catal. Rev. 45, 151 (2003).Google Scholar
2. Otsuka, K., Kobayashi, S. and Takenaka, S., J. Catal. 200, 4 (2001).Google Scholar
3. Muradov, N.Z. and Veziroğlu, T.N., Int. J. Hydrogen Energy, 30, 225 (2005).Google Scholar
4. Rostrup-Nielsen, J.R., Catal. Rev. 46, 247 (2004).Google Scholar
5. Jamal, Y. and Wyszynski, M.-L-, Int. J. Hydrogen Energy, 19, 557 (1994).Google Scholar
6. Zhang, T. and Amiridis, M.D., Appl. Catal. A: General, 167, 161 (1998).Google Scholar
7. Li, Y., Chen, J., Qin, Y. and Chang, L., Energy & Fuels, 14, 1188 (2000).Google Scholar
8. Takenaka, S., Ogihara, H., Yamanaka, I. and Otsuka, K., Appl. Catal. A: General, 217, 101 (2001).Google Scholar
9. Shah, N., Panjala, D. and Huffman, G.P., Energy & Fuels, 15, 1528 (2001).Google Scholar
10. Otsuka, K. and Takenaka, S., Catal. Surveys Asia, 8, 77 (2004).Google Scholar
11. Wang, H. and Baker, R.T.K., J. Phys. Chem. B, 108, 20273 (2004).Google Scholar
12. Couttenye, R.A., De Vila, M.H. and Suib, S.L., J. Catal. 233, 317 (2005).Google Scholar
13. Wang, J. A., Dominguez, J. M., Montoya, A., Castillo, S., Navarrete, J., Moran-Pineda, M. and Reyes-Gasga, J., Chem. Mater. 14, 4676 (2002).Google Scholar
14. Terribile, D., Trovarelli, A., Llorca, J., de Leitemburg, C. and Dolcetti, G., Catal. Today. 43, 79 (1998).Google Scholar
15. Fernández-Garcia, M., Gómez Rebollo, E., Guerrero Ruiz, A., Conesa, J.C. and Soria, J., J. Catal. 172, 146 (1997).Google Scholar
16. Fajardie, F., Tempere, J. F., Manolo, J. M., Djega-Mariadassou, G. and Blanchard, G., J. Chem. Soc., Faraday Trans., 94, 3727 (1998).Google Scholar
17. Fallah, J. E., Boujana, S., Dexpert, H., Kiennemann, A., Majeerus, J., Touret, O., Villain, F. and Le Normand, F., J. Phys. Chem. 98, 5522 (1994).Google Scholar
18. Ciuparu, D., Bensalem, A., Pfefferle, L., Appl. Catal. B: Environ. 26, 241 (2000).Google Scholar