Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T23:19:13.288Z Has data issue: false hasContentIssue false

Catalyst-free Growth of Large Scale Ga2O3 Nanowires

Published online by Cambridge University Press:  15 March 2011

Ko-wei Chang
Affiliation:
Department of Chemical Engineering, National Cheng Kung University Tainan, Taiwan
Sai-chang Liu
Affiliation:
Department of Chemical Engineering, National Cheng Kung University Tainan, Taiwan
Liang-Yih Chen
Affiliation:
Department of Chemical Engineering, National Cheng Kung University Tainan, Taiwan
Franklin Chau-Nan Hong
Affiliation:
Department of Chemical Engineering, National Cheng Kung University Tainan, Taiwan
Jih-Jen Wu
Affiliation:
Department of Chemical Engineering, National Cheng Kung University Tainan, Taiwan
Get access

Abstract

Large scale of straight Ga2O3 nanowires is grown on a fused silica substrate by a simple catalyst-free CVD method using Ga metal and N2 / H2O reactants. The Ga2O3 nanowires with diameters ranging from 60 to 150 nm can be as long as several micrometers. XRD and TEM analyses indicate that the Ga2O3 nanowires exhibit a monoclinic structure. PL characteristic of the Ga2O3 nanowires shows a UV emission of 375 nm at room temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Lai, X.T., Peng, H.Y., Frederick Au, C.K., Wang, N., Bello, I., Lee, C.S., and Lee, S.T., Appl. Phys. Lett. 76, 294 (2000).Google Scholar
2. Dai, H. J., Wong, E.W., Lu, Y.Z., Fan, S.S., Lieber, C.M., Nature 375, 769 (1995).Google Scholar
3. Han, W.Q., Fan, S.S., Li, Q.Q., Liang, W.J., Gu, B.L., Yu, D.P., Chem. Phys. Lett. 265, 374 (1997).Google Scholar
4. Cheng, G.S., Chen, S.H., Zhu, X.G., Mao, Y.Q., Zhang, L.D., Materials Science and Engineering A286, 165 (2000).Google Scholar
5. He, M., Minus, I., Zhou, P., Mohammed, S. N., Halpern, J. B., Jacobs, R., Sarney, W. L., Salamanca-Riba, L., Vispute, R. D., Appl. Phys. Lett. 77, 3731 (2000).Google Scholar
6. Liang, C.H., Meng, G.W., Lei, Y., Zhang, L.D., Adv. Mater. 13, No.17, 1330 (2001).Google Scholar
7. Morales, A.M., Lieber, C.M., Science 279, 208 (1998).Google Scholar
8. Zhang, Y.F., Tang, Y.H., Wang, N., Yu, D.P., Lee, C.S., Bello, I., Lee, S.T., Appl. Phys. Lett. 72, 1835 (1998).Google Scholar
9. Lieber, C. M., Solid State Communication. 107, 607 (1998).Google Scholar
10. Ogita, M., Saika, N., Nakanishi, Y., and Hatanaka, Y., Appl. Surf. Sci. 142, 188 (1999).Google Scholar
11. Edwards, D.D., Mason, T.O., Goutenoir, F., and Poeppelmeier, K.R., Appl. Phys. Lett. 70, 1706 (1997).Google Scholar
12. Binet, Laurent, and Gouruer, Didier, J. Phys. Chem Solids, 59, 8, 1241 (1998)Google Scholar
13. Blasse, G. and Bril, A., J. Phys. Chem. Solids, 31, 707 (1970).Google Scholar
14. Harwig, T., Kellendonk, F., and Slappendel, S., J.Phys. Chem. Solids, 39, 675 (1978).Google Scholar
15. Lee, Y.H., Choi, Y.C., Kim, W.S., Park, Y.S., Lee, S.M., Bae, D.J., Adv. Mater. 12, No 10, 746 (2000).Google Scholar
16. Zhang, H.Z., Kong, Y.C., Wang, Y.Z., Due, X., Bai, Z.G., Wang, J.J., Yu, D.P., Ding, Y., Hang, Q.L., Feng, S.Q., Solid State Communication, 109, 677 (1999).Google Scholar