Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T17:32:40.531Z Has data issue: false hasContentIssue false

Catalyst-Free GaN Nanowire Nucleation: Correlation of Temperature-Dependent Nanowire Orientation and Growth Matrix Changes

Published online by Cambridge University Press:  31 January 2011

Kaylee McElroy
Affiliation:
Virginia M Ayres
Affiliation:
[email protected], Michigan State University, East Lansing, Michigan, United States
Thomas R. Bieler
Affiliation:
Benjamin W Jacobs
Affiliation:
[email protected], Sandia National Laboratories, Livermore, California, United States
Martin A Crimp
Affiliation:
[email protected], United States
Get access

Abstract

Growth orientation and type of internal structures are both observed to change abruptly as a function of growth temperature in catalyst free growth of gallium nitride nanowires. In the present work, corresponding temperature-dependent changes in the growth matrix substrate that can affect the availability of nucleation sites and influence the reactivity of constituent adatom materials in catalyst-free nanowire growth are investigated. The influence of Ga vapor pressure and an abrupt change in the availability of single versus molecular adatom constituents is identified as a possible controlling parameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Johnson, J., Choi, H., Knutsen, K., Schaller, R, Yang, P., and Saykally, R., Nature Mater. 1, 106 (2002).Google Scholar
2 Jacobs, B. W., Ayres, V. M., Stallcup, R. E., Hartman, A., Tupta, M. A., Baczewski, A. D., Crimp, M. A., Halpern, J. B., He, M., and Shaw, H. C., Nanotech. 18, 475710 (2007).Google Scholar
3 Huang, Y., Duan, X., Cui, Y., and Lieber, C., Nano Lett. 1, 6 (2002).Google Scholar
4 Huang, Y., Duan, X., and Lieber, C., Small 1, 142 (2005).Google Scholar
5 He, M., Zhou, P., Mohammad, S., Harris, G., Halpern, J. B., Jacobs, R., Sarney, W., and Salamanca-Riba, L., J. Cryst. Growth, 231, 357 (2001).Google Scholar
6 Calleja, E., Sanchez-Garcia, M. A., Sanchez, F. J., Calle, F., Naranjo, F. B., Munoz, E., Molina, S. I., Sanchez, A. M., Pacheco, F. J., and Garcιa, R., J. Cryst. Growth 296, 201 (1999).Google Scholar
7 Yoshizawa, M., Kikuchi, A., Mori, M., Fujita, N., and Kishino, K., Jpn. J. Appl. Phys. 36, L459 (1997).Google Scholar
8 Stoica, T., Sutter, E., Meijers, R., Debnath, R. K., Calarco, R., and Luth, H., Small 4, 751 (2008).Google Scholar
9M. Heiß, Gustafsson, A., Conesa-Boj, S., Peiro, F., Morante, J., Abstreiter, G., Arbiol, J., Samuelson, L., and Morral, A. Fontcuberta i, Nanotech. 20, 075603 (2009).Google Scholar
10 Thelander, C., Agarwal, P., Brongersma, S., Eymery, J., Feiner, L. F., Forchel, A., Scheffler, M., Riess, W., Ohlsson, B. J., Gosele, U. and Samuelson, L., Mater. Today 9, 28 (2006).Google Scholar
11 Jacobs, B. W., Ayres, V. M., Petkov, M. P., Halpern, J. B., He, M., Baczewski, A. D., McElroy, K., Crimp, M. A., Zhang, J., Shaw, H. C., Nano Lett. 7, 1435 (2007).Google Scholar
12 Jacobs, B. W., Ayres, V. M., Crimp, M. A., and McElroy, K., Nanotech. 19, 405706 (2008).Google Scholar
13 Jacobs, B. W., Crimp, M. A., McElroy, K., and Ayres, V. M., Nano Lett. 8, 4353 (2008).Google Scholar
14 Xu, H. Y., Liu, Z., Liang, Y., Rao, Y. Y., Zhang, X. T., and Hark, S. K., Appl. Phys. Lett. 95, 133108 (2009).Google Scholar
15 Frank, F. C., Acta Cryst. 4, 497 (1951).Google Scholar
16 Bierman, M. J., Lau, Y. K. A., Kvit, A. V., Schmitt, A. L., and Jin, S., Science 320, 1060 (2008).Google Scholar
17 McElroy, K., Catalyst-free Gallium Nitride Nanowire Nucleation, Thesis for Master of Science in Electrical Engineering, Michigan State University, 2009.Google Scholar
18 Gaskell, D. R., Introduction to the Thermodynamics of Materials, 5th edition (Taylor & Francis, New York, NY, 2008).Google Scholar