Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:26:34.240Z Has data issue: false hasContentIssue false

Catalysis with Transition Metal Nanoparticles of Different Shapes

Published online by Cambridge University Press:  01 February 2011

Radha Narayanan
Affiliation:
[email protected], Georgia Institute of Technology, Department of Chemistry and Biochemistry, 770 State St., Atlanta, Georgia, 30332, United States
Mostafa A. El-Sayed
Affiliation:
[email protected], Georgia Institute of Technology, Department of Chemistry and Biochemistry, 770 State St., Atlanta, Georgia, 30332, United States
Get access

Abstract

Colloidal metal nanoparticles have a high surface-to-volume ratio which makes them potentially attractive catalysts. Furthermore, atoms located at different facets, edges, or corners could show different catalytic activity. For this reason, different shapes could have different catalytic activities. In addition, surface atoms are so active that there could be significant changes in their shape and size during the course of nanocatalysis. As a result, a thorough examination on the effect of the catalytic process on the shape and size of colloidal metal nanoparticles after catalysis is necessary to fully evaluate their use in catalytic processes.

In this paper, we briefly review our recent work on examining the shape dependence of nanocatalysis as well as the stability of platinum and palladium nanoparticles during the course of two reactions: the electron transfer reaction and the Suzuki reaction. It is found that nanocatalysis is indeed shape-dependent during the early stages of the electron transfer reaction. During the full course of the reaction, there are changes in the nanoparticle shape as well as changes in the activation energy that takes place. In the case of a relatively harsh reaction such as the Suzuki reaction, spherical palladium nanoparticles grow in size due to Ostwald ripening processes. Tetrahedral platinum nanoparticles catalyzing the Suzuki reaction transform into spherical shape and grow larger in size. We also conducted studies on the effect of individual reactants on the nanoparticle size and shape. In addition, the surface catalytic mechanisms of the reactions have been confirmed using spectroscopic tools such as FTIR and Raman spectroscopy. These kinds of studies will be very useful in the process of designing better nanocatalysts in the future.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bradley, J. J. Clus. Colloids 1994, 459.Google Scholar
2. Duff, D. D.; Baiker, A. Stud. Surf. Sci. Catal. 1995, 91, 505.Google Scholar
3. Toshima, N. NATO ASI Ser., Ser. 3 1996, 12, 371.Google Scholar
4. Boennermann, H.; Braun, G.; Brijoux, G. G.; Brinkman, R.; Tilling, A. A.; Schulze, S. S.; Siepen, K. J. Organomet. Chem. 1996, 520(1–2), 143.Google Scholar
5. Fugami, K. Organomet. News 2000, 1, 25.Google Scholar
6. Mayer, A. A. R. Polym. Adv. Technol. 2001, 12(1–2), 96.Google Scholar
7. Bonnemann, H.; Richards, R. Syn. Meth. Organom. Inorg. Chem. 2002, 10, 209.Google Scholar
8. Moiseev, I. I.; Vargaftik, M. M. Russ. J. Chem. 2002, 72(4), 512.Google Scholar
9. Collier, P. P.; Iggo, J. J.; Whyman, R. J. Mol. Catal. A: Chem. 1999, 146(1–2), 149.Google Scholar
10. Sculz, J.; Roucoux, A.; Patin, H. Chem. Eur. J. 2000, 6(4), 618.Google Scholar
11. Wang, Q.; Liu, H.; Han, M.; Li, X.; Jiang, D. J. Mol. Catal. A: Chem. 1997, 118(2), 145.Google Scholar
12. Kim, S.; Son, S. S.; Lee, S. S.; Hyeon, T.; Chung, Y. Y.; Chem. Commun. 2001, 2212.Google Scholar
13. Larpent, C.; Menn, B. B.; Patin, H. J. Mol. Catal. 1991, 65, L35.Google Scholar
14. Narayanan, R.; El-Sayed, M. M. J. Am. Chem. Soc., 2003, 125(27), 8340.Google Scholar
15. Narayanan, R.; El-Sayed, M. M., J. Phys. Chem. B, 2004, 108(25), 8572.Google Scholar
16. Narayanan, R.; El-Sayed, M. M., Langmuir 2005, 21(5), 2027.Google Scholar
17. Narayanan, R.; El-Sayed, M. M., J. Phys. Chem. B 2005, 109(10), 4357.Google Scholar
18. Narayanan, R.; El-Sayed, M. M., J. Catal. 2005, 234(2), 348.Google Scholar
19. Narayanan, R.; El-Sayed, M. M., J. Phys. Chem. B, 2003, 107(45), 12416.Google Scholar
20. Narayanan, R.; El-Sayed, M. M., J. Phys. Chem. B, 2004, 108(18), 5726.Google Scholar
21. Narayanan, R.; El-Sayed, M. M., Nano Lett., 2004, 4(7), 1343.Google Scholar
22. Narayanan, R.; El-Sayed, M. M., J. Am. Chem. Soc., 2004, 126(23), 7194.Google Scholar
23. Narayanan, R.; El-Sayed, M. M., J. Phys. Chem. B, 2005, 109(39), 18460.Google Scholar
24. Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M. M., Chem. Rev., 2005, 105(4), 1025.Google Scholar
25. Ahmadi, T. T.; Wang, Z. Z.; Green, T. T.; Henglein, A.; El-Sayed, M. M. Science, 1996, 272, 1924.Google Scholar
26. Yu, Y.; Xu, B., Chin. Sci. Bull., 2003, 48(23), 2589.Google Scholar
27. Narayanan, R.; El-Sayed, M. M., J. Phys. Chem. B, 2005, 109(26), 12663.Google Scholar
28. Thathagar, M. M.; Beckers, J.; Rothenberg, G. J. Am. Chem. Soc. 2002, 124(40), 11858.Google Scholar