Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-17T17:21:05.304Z Has data issue: false hasContentIssue false

Carrier Transport and Lateral Conductivity in Nanocrystalline Silicon Layers

Published online by Cambridge University Press:  17 March 2011

H. B. Kim
Affiliation:
Nanoscale Silicon Research Initiative, Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
L. Montes
Affiliation:
Nanoscale Silicon Research Initiative, Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
R. Krishnan
Affiliation:
Nanoscale Silicon Research Initiative, Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
P. M. Fauchet
Affiliation:
Nanoscale Silicon Research Initiative, Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
L. Tsybeskov
Affiliation:
Nanoscale Silicon Research Initiative, Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY 14627, U.S.A
Get access

Abstract

We have studied carrier transport and lateral electrical properties of nanocrystalline Si layers containing size controlled Si nanocrystals. Using results from direct current (dc) and alternating current (ac) conductivity measurements, the charging of Si nanocrystals and Coulomb blockade effect are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Qin, G.G., Ma, S.Y., Li-Ping, Y., Ma, Z.C., and Zong, W.H., Solid State Commun., 106, 329 (1998).Google Scholar
2. Nakajima, A., Nakao, H., Ueno, H., Futatsugi, T., and Yokoyama, N., Appl. Phys. Lett., 73, 1071 (1998).Google Scholar
3. Choi, S.H. and Elliman, R.G., Appl. Phys. Lett., 75, 968 (1999).Google Scholar
4. Rokhinson, L.P., Guo, L.J., Chou, S.Y., and Tsui, D.C., Appl. Phys. Lett., 76, 1591 (2000).Google Scholar
5. Tsybeskov, L., Grom, G.F., Fauchet, P.M., McCaffrey, J.P., Baribeau, J.-M., Sproule, G.I., and Lockwood, D.J., Appl. Phys. Lett., 75, 2265 (1999).Google Scholar
6. Ouisse, T., V. Ioannou-Sougleridis, Kouvatsos, A., and Nassiopoulou, A.G., J. Phys. D:Appl. Phys., 33, 2691 (2000).Google Scholar
7. Mensah, S Y, Allotey, F K A, and Mensah, N G, J. Phys.:Condens. Matter, 12, 5225 (2000).Google Scholar
8. Tsybeskov, L., Hirschman, K.D., Duttagupta, S.P., Zacharias, M., Fauchet, P.M., McCaffrey, J.P., and Lockwood, D.J., Appl. Phys. Lett., 72, 43 (1998).Google Scholar
9. Zacharias, M., Blasing, J., Veit, P., Tsybeskov, L., Hirshman, K., and Fauchet, P.M., Appl. Phys. Lett., 74, 2614 (1999).Google Scholar
10. Bisaro, R., Magarino, J., Pastol, Y., Germain, P., and Zellama, K., Phys. Rev. B 40, 7655 (1989).Google Scholar
11. Sze, S.M., Physics of Semiconductor Devices (Wiley, New York, 1969).Google Scholar