Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T17:25:10.986Z Has data issue: false hasContentIssue false

Carrier Dynamics of Abnormal Temperature-Dependent Emission Shift in Mocvd-Grown InGaN Epilayers and InGaN/GaN Quantum Wells

Published online by Cambridge University Press:  10 February 2011

Yong-Hoon Cho
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
B. D. Little
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
G. H. Gainer
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
J. J. Song
Affiliation:
Center for Laser and Photonics Research and Department of Physics Oklahoma State University, Stillwater, OK 74078
S. Keller
Affiliation:
Electrical and Computer Engineering and Materials Departments University of California, Santa Barbara, CA 93106
U. K. Mishra
Affiliation:
Electrical and Computer Engineering and Materials Departments University of California, Santa Barbara, CA 93106
S. P. DenBaars
Affiliation:
Electrical and Computer Engineering and Materials Departments University of California, Santa Barbara, CA 93106
Get access

Abstract

Temperature-dependent photoluminescence (PL) studies have been performed on InGaN epilayers and InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition. We observed anomalous temperature dependent emission behavior (specifically an S-shaped decrease-increase-decrease) of the peak energy (EpL) of the InGaN-related PL emission with increasing temperature. In the case of the InGaN epilayer, EPL decreases in the temperature range of 10 - 50 K, increases for 50 - 110 K, and decreases again for 110 - 300 K with increasing temperature. For the InGaN/GaN MQWs, EPL decreases from 10 - 70 K, increases from 70 - 150 K, then decreases again for 150 - 300 K. The actual temperature dependence of the PL emission was estimated with respect to the bandgap energy determined by photoreflectance spectra. We observed that the PL peak emission shift has an excellent correlation with a change in carrier lifetime with temperature. We demonstrate that the temperature-induced S-shaped PL shift is caused by the change in carrier recombination dynamics with increasing temperature due to inhomogeneities in the InGaN structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Takeuchi, T., Sota, S., Katsuragawa, M., Komori, M., Takeuchi, H., Amano, H., and Akasaki, I., Jpn. J. Appl. Phys., Part 2 36, L382 (1997).Google Scholar
2. Im, J. S., Kollmer, H., Off, J., Sohmer, A., Scholz, F., and Hangleiter, A., Phys. Rev. B 57, R9435 (1998); A. Hangleiter, J. S. Im, H. Kollmer, S. Heppel, J. Off, and F. Scholz, MRS Internet J. Nitride Semicond. Res. 3, 15 (1998).Google Scholar
3. Jeon, E. S., Kozlov, V., Song, Y.-K., Vertikov, A., Kuball, M., Nurmikko, A. V., Liu, H., Chen, C., Kern, R. S., Kuo, C. P., and Craford, M. G., Appl. Phys. Lett. 69, 4194 (1996).Google Scholar
4. Chichibu, S., Azuhata, T., Sota, T., and Nakamura, S., Appl. Phys. Lett. 69, 4188 (1996).Google Scholar
5. Perlin, P., Iota, V., Weinstein, B. A., Wisniewski, P., Suski, T., Eliseev, P. G., and Osinski, M., Appl. Phys. Lett. 70, 2993 (1997).Google Scholar
6. Cho, Y. H., Gainer, G. H., Fischer, A. J., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 73, 1370 (1998).Google Scholar
7. Cho, Y. H., Song, J. J., Keller, S., Minsky, M. S., Hu, E., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 73, 1128 (1998); Y. H. Cho, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, ibid. 73, 3181 (1998).Google Scholar
8. Lefebvre, P., Allegre, J., Gil, B., Kavokine, A., Mathieu, H., Kim, W., Salvador, A., Botchkarev, A., and Morkoc, H., Phys. Rev. B 57, R9447 (1998).Google Scholar
9. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997); Y. Narukawa, Y. Kawakami, Sz. Fujita, Sg. Fujita, and S. Nakamura, Phys. Rev. B 55, R1938 (1997).Google Scholar
10. Eliseev, P. G., Perlin, P., Lee, J., and Osinski, M., Appl. Phys. Lett. 71, 569 (1997).Google Scholar
11. Zolina, K. G., Kudryashov, V. E., Turkin, A. N., and Yunovich, A. E., MRS Internet J. Nitride Semicond. Res. 1, Art, 11 (1996).Google Scholar
12. Keller, S., Abare, A. C., Minsky, M. S., Wu, X. H., Mack, M. P., Speck, J. S., Hu, E., Coldren, L. A., Mishra, U. K., and DenBaars, S. P., Materials Science Forum 264–268, 1157 (1998).Google Scholar
13. Bidnyk, S., Schmidt, T. J., Cho, Y. H., Gainer, G. H., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 72, 1623 (1998).Google Scholar
14. Schmidt, T. J., Cho, Y. H., Gainer, G. H., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., Appl. Phys. Lett. 73, 560 (1998); ibid. 73, 1892 (1998).Google Scholar
15. Cho, Y. H., Fedler, F., Hauenstein, R. J., Park, G. H., Song, J. J., Keller, S., Mishra, U. K., and DenBaars, S. P., J. Appl. Phys. (to be published).Google Scholar
16. Varshni, Y. P., Physica 34, 149 (1967).Google Scholar
17. Shan, W., Schmidt, T. J., Yang, X. H., Hwang, S. J., Song, J. J., and Goldenberg, B., Appl. Phys. Lett. 66, 985 (1995); W. Shan, B. D. Little, J. J. Song, Z. C. Feng, M. Schurman, and R. A. Stall, ibid. 69, 3315 (1996).Google Scholar
18. Ridley, B. K., Phys. Rev. B 41, 12 190 (1990).Google Scholar
19. Feldmann, J., Peter, G., Gobel, E. O., Dawson, P., Moore, K., Foxon, C., and Elliott, R. J., Phys. Rev. Lett. 59, 2337 (1987).Google Scholar
20. Harris, C. I., Monemar, B., Amano, H., and Akasaki, I., Appl. Phys. Lett. 67, 840 (1995).Google Scholar
21. Sun, C. K., Keller, S., Wang, G., Minsky, M. S., Bowers, J. E., and DenBaars, S. P., Appl. Phys. Lett. 69, 1936 (1996).Google Scholar
22. Im, J. S., Harle, V., Scholz, F., and Hangleiter, A., MRS Internet J. Nitride Semicond. Res. 1, 37 (1996).Google Scholar