Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:00:39.605Z Has data issue: false hasContentIssue false

The Carbon-Lithium Negative Electrode for Lithium-Ion Batteries in Polymer Electrolyte

Published online by Cambridge University Press:  16 February 2011

R. Yazami
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide de Grenoble - URA CNRS 1213 - Institut National Polytechnique de Grenoble - BP75 - 38402 St Martin d'Hères -, France
M. Deschamps
Affiliation:
Laboratoire d'Ionique et d'Electrochimie du Solide de Grenoble - URA CNRS 1213 - Institut National Polytechnique de Grenoble - BP75 - 38402 St Martin d'Hères -, France
Get access

Abstract

Several types of carbonaceous materials are evaluated as negative electrodes for lithium storage in polymer electrolyte based cells operated at 100ºC. The corresponding faradaic efficiencies of the spherical cycle and the achieved reversible first capacity and rate capacity will be given. A meso carbon yielded a higher capacity than the theoretical 372 mAh/g. This is tentatively explained by the necessary enhancement of the carbon/polymer interfacial properties through the formation of C-Li-O bonding at the carbon surface and by the possible formation of multilayers of lithium on the external a,b planes of disordered carbons. The formation of the passivating layer on the carbon surface will be described.

A lithium-ion type battery using coke and LiNiO2 as the negative and positive leads and POE-LiCIO4 was operated at 100ºC and cycled galvanostatically. Good reversible capacity was attained with the LiNiO2 electrode.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nagaura, T. and Tozawa, K., Progress in Batteries and Solar Cells 9, 209(1990)Google Scholar
2. Ozawa, K. and Yokokawa, M., in Proc. 10 th International Seminar on Primary and. Secondary Battery Technology and Applications, 1993, March 1-4, Deerfield Beach, U.S.A.Google Scholar
3. Yazami, R. and Touzain, Ph., J. Power Sources 9, 365 (1983)Google Scholar
4. Billaud, D., Henry, F. X. and Willmann, P., Molec. Cryst. and Liq. Cryst. 245, 159 (1994).Google Scholar
5. Yazami, R., Zaghib, K. and Deschamps, M., Molec. Cryst. and Liq. Cryst. 245, 165 (1994).Google Scholar
6. Mabuchi, A., Tokomitsu, K., Fujimoto, H. and Kasuh, T. in Extended Abst. of 7th Intern. Meeting on Lithium Batteries, Boston, May 15-20, 1994, p. 212.Google Scholar
7. Gauthier, M., Fauteux, D., Vassart, G., Bélanger, A., Duval, M., Ricoux, P., Chabagno, J. M., Muller, D., and Rigaud, P., Armand, M. B. and Deroo, D., J. Electrochem. Soc. 122, 1333 (1985).Google Scholar
8. Mizushima, K., Jones, P. C., Wiseman, P. J. and Goodenough, J. B., Mater. Res. Bull. 15, 783 (1980).Google Scholar
9. Fong, R., U. von Sacken and Dahn, J. R., J. Electrochem. Soc. 137, 2009 (1990).Google Scholar
10. Yazami, R. and Deschamps, M., J. Power Sources (to be published)Google Scholar
11. Sato, K., Noguchi, M., Demachi, A., Old, N. and Endo, M., Science 264,556 (1994)Google Scholar
12. Yazami, R., Cherigui, A., Nalimova, V. and Guérard, D. in Proc. Lithium Batteries, Electrochem. Soc. 93-24, 1(1993).Google Scholar
13. Guérard, D., Ph.D. Thesis, University of Nancy (France) 1937 Google Scholar
14. Yazami, R. and Guérard, D., J. Power Sources 43-44, 39 (1993).Google Scholar
15. Menancourt, J., Thomy, A. and Duval, X., J. Physique (France) 38-C4, 194 (1977)Google Scholar
16. Khatir, Y., Coulon, M. et Bonnetain, L., J. Chim. Phys. 75, 789 (1978)Google Scholar
17. Delachaume, J. C., Coulon, M. and Bonnetain, L. Surface Sci. 133, 365 (1983)Google Scholar