Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:30:54.784Z Has data issue: false hasContentIssue false

Carbon-Induced Ge Islands on Si(001) Grown by LPCVD

Published online by Cambridge University Press:  10 February 2011

M. Goryll
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
L. Vescan
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
H. Lüth
Affiliation:
Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
Get access

Abstract

The formation of carbon-induced Ge islands has been studied using low-pressure chemical vapour deposition (LPCVD) of Ge on Si(001) at temperatures between 600°C and 700°C. Propane (C3 H8 ) diluted in He was used as a carbon source. The experiments show that the influence of carbon was most significant for deposition at low growth temperature of the Ge island layer. Small-sized islands with a narrow size distribution could be achieved using a carbon adsorption layer. Compared to a sample grown without this layer, the size distribution was significantly smaller. An enhancement of the growth rate of Ge, as seen from Rutherford backscattering spectroscopy (RBS) will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Schmidt, O. G., Lange, C., and Eberl, K., Appl. Phys. Lett. 71, 2340 (1997).Google Scholar
[2] Schmidt, O. G., Lange, C., Eberl, K., Kienzle, O., and Ernst, F., Thin Solid Films 321, 70 (1998).Google Scholar
[3] Seal, C. K., Samara, D., and Banerjee, S. K., Appl. Phys. Lett. 71, 3564 (1997).Google Scholar
[4] Björketun, L.-O., Hultman, L., Ivanov, I. P., Wahab, Q., and Sundgren, J.-E., J. Cryst. Growth 182, 379 (1997).Google Scholar
[5] Hallin, C., Ivanov, I. G., Egilsson, T., Henry, A., Kordina, O., and Janzén, E., J. Cryst. Growth 183, 163 (1998).Google Scholar
[6] Li, J. P. and Steckl, A. J., Mater. Res. Soc. Symp. Proc. 280, 739 (1993).Google Scholar
[7] Eberl, K., Iyer, S. S., Zollner, S., Tsang, J. C., and LeGoues, F. K., Appl. Phys. Lett. 60, 3033 (1992).Google Scholar
[8] Ohfuti, M., Awano, Y., and Yokohama, N., Phys. Rev. B 60, 15515 (1999).Google Scholar
[9] Goryll, M., Vescan, L., and Lüth, H., Mater. Res. Soc. Symp. Proc. 570, 205 (1999).Google Scholar
[10] Goryll, M., Vescan, L., and Lüth, H., Mater. Sci. Eng. B 69–70, 251 (2000).Google Scholar
[11] Medeiros-Ribeiro, G., Kamins, T.I., Ohlberg, D., and Williams, R. S., Mater. Sci. Eng. B 67, 31 (1999).Google Scholar
[12] Ross, F. M., Tersoff, J., and Tromp, R. M., Phys. Rev. Lett. 80, 984 (1998).Google Scholar
[13] If one assumes a homogeneous distribution of C atoms on the surface, the average distance between two C atoms at a bulk concentration of 10−3 per unit volume is 10 lattice constants (1.4 nm), which is significantly smaller than the Ge diffusion length of 100µm at 700°C [14].Google Scholar
[14] Vescan, L., Grimm, K., Goryll, M., and Holländer, B., Mater. Sci. Eng. B 69–70, 324 (2000).Google Scholar
[15] Yang, W., Dohnálek, Z., Choyke, W. J., and Yates, J. J. T., Surf. Sci. 392, 8 (1997).Google Scholar