Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T01:36:20.031Z Has data issue: false hasContentIssue false

Carbon-based Materials as Key-enabler for “More Than Moore”

Published online by Cambridge University Press:  03 March 2011

Franz Kreupl*
Affiliation:
SanDisk Corporation, 601 McCarthy Boulevard, Milpitas, CA 95035, USA
Get access

Abstract

Carbon-based materials like nanotubes and graphene are heavily investigated as future transistor devices and in interconnect applications. While much of the interest has been devoted to the device aspects in competition to conventional transistors, the paper here will focus on some less known applications of pyrolytically deposited carbon. Proposed and demonstrated are applications in capacitors, gate materials, through-silicon vias, novel non-volatile memories, carbon-silicon Schottky diodes and sensors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kreupl, F., Graham, A. P., Duesberg, G. S., Steinhoegl, W., Liebau, M., Unger, E., Hoenlein, W., Microelectron. Eng. 64, 399408 (2002)Google Scholar
2. Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Soukiassian, P., Tejeda, A., Taleb-Ibrahimi, A., Le Fèvre, P., Bertran, F., Berger, C., de Heer, W.A., Lanzara, A., Conrad, E.H., PRL 103, 226803 (2009)Google Scholar
3. Kreupl, F., Seidel, R., Pamler, W., Method of depositing a conductive material on a substrate and semiconductor contact device, patent DE10345393 (B4) (2003)Google Scholar
4. Kreupl, F., Steinlesberger, G., Method of depositing a conductive carbon material on a semiconductor for forming a Schottky contact and semiconductor contact device, patent DE102004006544 (B3) (2004)Google Scholar
5. Aichmayr, G., Avellan, A., Duesberg, G.S., Kreupl, F., Kudelka, S., Liebau, M., Orth, A., Sänger, A., Schumann, J., Storbeck, O., IEEE Symposium on VLSI Technology, pp. 186187 (2007).Google Scholar
6. Böscke, T. S., Guerrero, G., Liebau, M., Uppal, S., Lee, Y.-P., Pethe, W., Patz, M., Kleye, A., Su, P.-Y., Orth, A., Liu, W.-C., Lützen, J., IEEE Electron Device Letters, 30, 442444 (2009)Google Scholar
7. Kreupl, F., Carbon diode array for resistivity changing memories, patent US000007768016B2 (2008)Google Scholar
8. Graham, A. P., Schindler, G., Duesberg, G. S., Lutz, T., Weber, W., J. Appl. Phys. 107, 114316 (2010)Google Scholar
9. Kreupl, F., Bruchhaus, R., Majewski, P., Philipp, J., Symanczyk, R., Happ, T., Arndt, C., Vogt, M., Zimmermann, R., Buerke, A., Graham, A., Kund, M., IEDM Tech. Dig., (2008), p. 521.Google Scholar
10. Di, Fu, Dan, Xie, Chen-Hui, Zhang, Di, Zhang, Jie-Bin, Niu, He, Qian and Li-Tian, Liu, Chinese Phys. Lett. 27 098102 (2010)Google Scholar
11. He, Y.; Zhang, J.; Guan, X.; Zhao, L.; Wang, Y.; Qian, H.; Yu, Z., Transactions on Electron Devices, Issue 99, to appear (2010)Google Scholar
12. Kreupl, F., Carbon memory, patent US000007728405B2 (2007)Google Scholar
13. Kreupl, F., Klostermann, U., Magnetoresistive sensor with tunnel barrier and method, patent appl. US 2009/0322319 A1 Google Scholar
14. Klostermann, U., Kreupl, F., Integrated circuit having a magnetic tunnel junction device and method, patent appl. US 2009/0321860 A1 Google Scholar