Hostname: page-component-7bb8b95d7b-qxsvm Total loading time: 0 Render date: 2024-09-13T11:48:24.672Z Has data issue: false hasContentIssue false

Carbon - silicon heterojunction diodes formed by CH4/ Ar rf plasma thin film deposition on Si substrates

Published online by Cambridge University Press:  26 February 2011

G. A. J. Amaratunga
Affiliation:
Engineering Dept., Cambridge University, Cambridge CB2 1PZ, U.K.
W. I. Milne
Affiliation:
Engineering Dept., Cambridge University, Cambridge CB2 1PZ, U.K.
A. Putnis
Affiliation:
Engineering Dept., Cambridge University, Cambridge CB2 1PZ, U.K.
K. K. Chan
Affiliation:
Engineering Dept., Cambridge University, Cambridge CB2 1PZ, U.K.
K. J. Clay
Affiliation:
Engineering Dept., Cambridge University, Cambridge CB2 1PZ, U.K.
M. E. Welland
Affiliation:
Engineering Dept., Cambridge University, Cambridge CB2 1PZ, U.K.
Get access

Abstract

Thin C films deposited from a CH4/Ar plasma on Si substrates kept at 20C are shown to be semiconducting. The semiconducting properties are associated with the poly-crystalline diamond grains present within the films. Diode type I-V characteristics observed from AVC/Si verticle structures are explained by the action of a C-Si heterojunction. A band gap of 2eV, a resistivity of 106Ω.cm and an electrical breakdown strength of 5.106 V/cm are estimated for the C.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bazhenov, V.K., Vikulin, F.M. and Gontar, A.G., Sov.Phys.Semicond. 19, 829, 1985 Google Scholar
2. Shenai, K. and Baliga, B.J., Trans. IEEE,ED–36 1811, 1989.Google Scholar
3. Glover, G.H., Sol.St.Electron., 16,973, 1973.Google Scholar
4. Prins, J.F., App.Phys.Letts., 41, 950, 1982.Google Scholar
5. Geis, M.W., Rathman, D.D., Ehrlich, D.J., Murphy, R.A. and Lindley, W.T., IEEE-EDL,8, 341, 1987.Google Scholar
6. Gildenblat, G.Sh., Grot, S.A., Wronski, C.R., Badzian, A.R., Badzian, T. and Messier, R., App.Phys.Letts., 53 586, 1988.Google Scholar
7. Amaratunga, G.A.J., Chan, K.K., Clay, K.J., Milne, W.I. and Putnis, A., Extnd. Abstracts, Diamond Technolgy Update Symp., MRS spring meeting 1989.Google Scholar
8. Amaratunga, G.A.J., Putnis, A., Clay, K.J. and Milne, W.I., App.Phys.Letts.,55, 634, 1989.Google Scholar
9. Caphart, T.W., Perry, T.A., Beetz, C.B., Belton, D.N., Fisher, G.B., Beall, C.E., Yates, B.N. and Taylor, J.W., App.Phys.Letts.,55, 957, 1989.Google Scholar
10. Namba, Y., Wei, J., Mhori, T. and Heidarpour, E., J.Vac.Sci and Tech.,A7.36, 1989.Google Scholar
11. Lifshitz, Y., Kasi, S.R. and Rabalais, J.W., Phys.Rev.Lett.,62, 1290, 1989.Google Scholar
12. Beiton, D.N., Harris, S.J., Schmieg, S.J., Weiner, A.M. and Perry, T.A., App.Phys.Letts.,54, 1989.Google Scholar
13. Amaratunga, G.A.J., Milne, W.I. and Putnis, A., IEEE-EDL, to appear in 11, Jan. 1990.Google Scholar