Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:39:23.906Z Has data issue: false hasContentIssue false

Carbon Nitride Film Formation by Low Energy Positive and Negative Ion Beam Deposition

Published online by Cambridge University Press:  03 September 2012

N. Tsubouchi
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan, [email protected]
Y. Horino
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan, [email protected]
B. Enders
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan, [email protected]
A. Chayahara
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan, [email protected]
A. Kinomura
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan, [email protected]
K. Fujii
Affiliation:
Osaka National Research Institute, AIST, Ikeda, Osaka 563, Japan, [email protected]
Get access

Abstract

Using a newly developed ion beam apparatus, PANDA (Positive And Negative ions Deposition Apparatus), carbon nitride films were prepared by simultaneous deposition of mass-analyzed low energy positive and negative ions such as C2-, N+, under ultra high vacuum conditions, in the order of 10−6 Pa on silicon wafer. The ion energy was varied from 50 to 400 eV. The film properties as a function of their beam energy were evaluated by Rutherford Backscattering Spectrometry (RBS), Fourier Transform Infrared spectroscopy (FTIR) and Raman scattering. From the results, it is suggested that the C-N triple bond contents in films depends on nitrogen ion energy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, A. Y., Cohen, M. L., Science. 245, 841 (1989)Google Scholar
2. Liu, A. Y., Cohen, M. L., Phys. Rev. B41, 10727(1990)Google Scholar
3. Han, H.-X., Feldman, B.J., Solid State Commun. 65, 921(1988)Google Scholar
4. Clay, K. J., Speakman, S. P., Amaratunga, G. A. J., Silva, S. R. P., J. Appl. Phys. 79, 7227(1996)Google Scholar
5. Miyake, S., Watanabe, S., Miyazawa, H., Murakawa, M., Kaneko, R., Miyamoto, T., Appl. Phys. Lett. 65, 3206(1994)Google Scholar
6. Niu, C., Lu, Y.Z., Lieber, C.M., Science. 261, 334(1993)Google Scholar
7. Chen, M.Y., Li, D., Lin, X., Dravid, V.P., Chung, Y.-W., Wong, M.-S., Sproul, W.D., J. Vac. Sci. Technol. A11, 521(1993)Google Scholar
8. Zhao, X.-A., Ong, C.W., Tsang, Y.C., Wong, Y.W., Chan, P.W., Coy, C.L., Appl. Phys. Lett. 66, 2652(1995)Google Scholar
9. Matsumoto, O., Kotaki, T., Shikano, H., Takemura, K., Tanaka, S., J. Electrochem. Soc. 141, L16(1994)Google Scholar
10. Mariotto, G., Freire, F.L. Jr., Achete, C.A., Thin Solid Films 241, 255(1994)Google Scholar
11. Hofsäss, H.C., Ronning, C., Griesmeier, U., Gross, M., Mat. Res. Soc. Symp. Proc. Vol.354, 93(1995)Google Scholar
12. Marton, D., Al-Bayati, A.H., Todorov, S.S., Boyd, K.J., Rabalais, J.W., Nucl. Instrum. Methods. B90, 277(1994)Google Scholar
13. Horino, Y., Tsubouchi, N., Fujii, K., Nakata, T., Takagi, T., Nucl. Instrum. Methods. B106, 657(1995)Google Scholar
14. Kumar, S., Tansley, T.L., Thin Solid Films 256, 44(1995)Google Scholar
15. Kaufman, J. H., Metin, S., Saperstein, D.D., Phys. Rev. B39, 13053(1989)Google Scholar
16. Enders, B., Horino, Y., Tsubouchi, N., Chayahara, A., Kinomura, A., Fujii, K., Nucl. Instrum. Methods. in pressGoogle Scholar