Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:09:42.102Z Has data issue: false hasContentIssue false

Carbon Nanotube Dispersion in Epoxy Nanocomposites with Clay

Published online by Cambridge University Press:  01 February 2011

Lei Liu
Affiliation:
[email protected], Texas A&M University, Materials Science and Engineering, 3003 TAMU, College Station, TX, 77843, United States
Jaime Grunlan
Affiliation:
[email protected], Texas A&M University, Materials Science and Engineering, 3003 TAMU, College Station, TX, 77843, United States
Get access

Abstract

Clay particles were used to facilitate the dispersion and network formation of single-walled carbon nanotubes (SWNTs) in an epoxy matrix. In the presence of clay, electrical conductivity increase and percolation threshold reduction for SWNT/epoxy composites were achieved simultaneously. These improvements are due to better SWNT dispersion, as evidenced by optical microscopy and scanning electron microscopy. Dynamic mechanical analysis (DMA) shows that mechanical properties of the composites without clay could be improved by clay addition. SWNTs appear to have an affinity for clay that causes them to become more exfoliated and better networked.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Postma, H. W. C., Teepen, T., Yao, Z., Grifoni, M., and Dekker, C., Science 293, 76 (2001).Google Scholar
2. Pop, E., Mann, D., Wang, Q., Goodson, K., and Dai, H., Nano Lett. 6, 96 (2006).Google Scholar
3. Ajayan, P. M., Chem. Rev. 99, 1787 (1999).Google Scholar
4. Ajayan, P. M., Schadler, L. S., Giannaris, C., and Rubio, A., Adv. Mater. 12, 750 (2000).Google Scholar
5. Strano, M. S., Nat. Mater. 5, 433 (2006).Google Scholar
6. Zhu, J., Peng, H., Rodriguez-Macias, F., Margrave, J. L., Khabashesku, V. N., Imam, A. M., Lozano, K., and Barrera, E. V., Adv. Funct. Mater. 14, 643 (2004).Google Scholar
7. Liang, F., Beach, J. M., Rai, P. K., Guo, W., Hauge, R. H., Pasquali, M., Smalley, R. E., and Billups, W. E., Chem. Mater. 18, 1520 (2006).Google Scholar
8. Park, H., Zhao, J., and Lu, J. P., Nano Lett. 6, 916 (2006).Google Scholar
9. Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H., Smalley, R. E., Schmidt, J., and Talmon, Y., Nano Lett. 3, 1379 (2003).Google Scholar
10. Liao, Y. H., Marietta-Tondin, O., Liang, Z., Zhang, C., and Wang, B., Mater. Sci. Eng., A 385, 175 (2004).Google Scholar
11. Zhu, J., Yudasaka, M., Zhang, M., and Iijima, S., J. Phys. Chem. B 108, 11317 (2004).Google Scholar
12. Giannelis, E. P., Adv. Mater., 8, 29 (1996).Google Scholar
13. Wang, K., Chen, L., Wu, J., Toh, M. L., He, C., and Yee, A. F., Macromolecules 38, 788 (2005).Google Scholar
14. Kotaki, M., Wang, K., Toh, M. L., Chen, L., Wong, S. Y., and He, C., Macromolecules 39, 908 (2006).Google Scholar
15. Liu, L., and Grunlan, J. C., Adv. Funct. Mater. 17, 2343 (2007).Google Scholar
16. Jan, C. J., Walton, M. D., McConnell, E. P., Jang, W. S., Kim, Y. S., and Grunlan, J. C., Carbon 44, 1974 (2006).Google Scholar