Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T02:35:52.150Z Has data issue: false hasContentIssue false

Carbon Nanomaterials in Silica Aerogel Matrices

Published online by Cambridge University Press:  01 February 2011

Christopher E. Hamilton
Affiliation:
[email protected], Los Alamos National Laboratory, Polymers and Coatings Group, MST-7, Los Alamos, New Mexico, United States
Manuel E Chavez
Affiliation:
[email protected], Los Alamos National Laboratory, Polymers and Coatings Group, MST-7, Los Alamos, New Mexico, United States
Juan G. Duque
Affiliation:
[email protected], Los Alamos National Laboratory, Physical Chemistry and Applied spectroscopy Group, C-PCS, Los Alamos, New Mexico, United States
Gautam Gupta
Affiliation:
[email protected], Los Alamos National Laboratory, Center for Integrated Nanotechnologies, MPA-CINT, Los Alamos, New Mexico, United States
Stephen Doorn
Affiliation:
[email protected], Los Alamos National Laboratory, Center for Integrated Nanotechnologies, MPA-CINT, Los Alamos, New Mexico, United States
Andrew M. Dattelbaum
Affiliation:
Kimberly A. DeFriend Obrey
Affiliation:
[email protected], Los Alamos National Laboratory, Polymers and Coatings Group, MST-7, Los Alamos, New Mexico, United States
Get access

Abstract

Silica aerogels are ultra low-density, high surface area materials that are extremely good thermal insulators and have numerous technical applications. However, their mechanical properties are not ideal, as they are brittle and prone to shattering. Conversely, single-walled carbon nanotubes (SWNTs) and graphene-based materials, such as graphene oxide, have extremely high tensile strength and possess novel electronic properties. By introducing SWNTs or graphene-based materials into aerogel matrices, it is possible to produce composites with the desirable properties of both constituents. We have successfully dispersed SWNTs and graphene-based materials into silica gels. Subsequent supercritical drying results in monolithic low-density composites having improved mechanical properties. These nanocomposite aerogels have great potential for use in a wide range of applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fricke, J. and Tillotson, T. Thin Solid Films 297, 212 (1997).Google Scholar
2 Pierre, A. C. and Pajonk, G. M. Chem. Rev. 102, 4243 (2002).Google Scholar
3 Mulder, C. A. M. Lierop, J. G. Van, and Frens, G. J. Non-Cryst. Solids 82, 92 (1986).Google Scholar
4 Leventis, N. Sotiriou-Leventis, C., Zhang, G. and Rawashdeh, A. M. M. Nano Lett. 2, 957 (2002).Google Scholar
5 Boday, D. J. DeFriend, K. A. Wilson, K. V. Coder, D. and Loy, D. A. Chem. Mater. 20, 2845 (2008).Google Scholar
6 Meador, M. A. B. Vivod, S. L. McCorkle, L. Quade, D. Sullivan, R. M. Ghosn, L. J. Clark, N. and Capadona, L. A. J. Mater. Chem. 18, 1843 (2008).Google Scholar
7 Bryning, M. B. Milkie, D. E. Islam, M. F. Hough, L. A. Kikkawa, J. M. and Yodh, A. G. Adv. Mater. 19, 661 (2007).Google Scholar
8 Price, B. K. Lomeda, J. R. and Tour, J. M. Chem. Mater. 21, 3917 (2009).Google Scholar
9 Hummers, W. S. and Offeman, R. E. J. Am. Chem. Soc. 80, 1339 (1958).Google Scholar
10 Lerf, A. He, H. Forster, M. and Klinowski, J. J. Phys. Chem. B102, 4477 (1998).Google Scholar
11 Boday, D. J. Stover, R. J. Muriithi, B. Keller, M. W. Wertz, J. T. Obrey, K. A. DeFriend, and Loy, D. A. ACS Appl. Mater. Interfaces 1, 1364 (2009).Google Scholar
12 McAllister, M. J. Li, J.L. Adamson, D. H. Schniepp, H. C. Abdala, A. A. Liu, J. Herrera-Alonso, M., Milius, D. L. Car, R. Prud'homme, R. K., and Aksay, I. A. Chem. Mater. 19, 4396 (2007).Google Scholar