Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T16:39:56.950Z Has data issue: false hasContentIssue false

Carbon Nanofibers as a Novel Catalyst Support

Published online by Cambridge University Press:  15 February 2011

Myung-Soo Kim
Affiliation:
Catalytic Materials Center, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
Nelly M. Rodriguez
Affiliation:
Catalytic Materials Center, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
R. Terry K. Baker
Affiliation:
Catalytic Materials Center, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
Get access

Abstract

Catalytically grown carbon nanofibers have been prepared by the thermal decomposition of carbon containing gases over copper-nickel and iron surfaces. This material is found to be highly graphitic in nature when prepared from certain catalysts and gaseous reactants. In the as-grown state, carbon nanofibers have surface areas in the range 200 to 300 m2/g, and by following careful activation procedures this value can readily be increased to ˜700 m2/g. Electrical measurements indicate that the material has a conductivity approaching that of single crystal graphite. This material combines the attributes of active carbon and graphite and in addition, the physical form of carbon nanofibers offers some interesting opportunities for the design of unique catalyst systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Smiseck, M. and Cerny, S., ”Active Carbon”, Elsevier, N. Y., 1970.Google Scholar
2. Thomas, C. L., ”Catalytic Processes and Proven Catalysts”, Academic Press, N. Y., 1970.Google Scholar
3. Jung, H.-J., Walker, P. L. Jr., and Vannice, M. A., J. catal. 75, 416 (1982).Google Scholar
4. Chen, A. A., Vannice, M. A. and Phillips, J., J. Phys. Chem. 91, 67 (1985).Google Scholar
5. Venter, J. J., Chen, A. A., Phillips, J. and Vannice, M. A., J. Catal. 119, 451 (1989).Google Scholar
6. Ehrburger, P., Mahajan, O. P. and Walker, P. L. Jr.,, J. Catal. 43, 61 (1976).Google Scholar
7. Rodriguez-Reinoso, F., Lopez-Gonzalez, J. D., Moreno-Castilla, C., Guerrero-Ruiz, A. and Rodriguez-Ramos, I, Fuel 63, 1089 (1984)Google Scholar
8. Phillips, J. and Dumesic, J. A., Appl. Catal. 9, 1 (1984).Google Scholar
9. Brownlie, I. C., Fryer, G. R., and Webb, G., J. Catal. 14, 263 (1969).Google Scholar
10. Gallezot, P., Richard, D. and Bergeret, G., in ”Novel Materials in Heterogeneous Catalysis” edited by Baker, R. T. K. and Murrell, L. L., ACS Symposium Series 437, p. 150, 1990 Google Scholar
11. Baker., R. T. K., Carbon 27. 315 (1989).Google Scholar
12. Rodriguez., N. M., J. Mater. Res. 8, 3233 (1993).Google Scholar
13. Koestner, R. J., Frost, J. C., Stair, P. C., Hove, M. A. Van, and Somorjai, G. A., Surf. Sci. 116, 85 (1982).Google Scholar
14. Zhu, X. Y., and White., J. M., Surf. Sci. 214, 240 (1989).Google Scholar
15. Yang, R. T. and Chen, J. P., J. Catal. 115, 240 (1989).Google Scholar
16. Kim, M. S., Rodriguez, N. M., and Baker, R. T. K., J. Catal. 134, 253 (1992).Google Scholar
17. Rodriguez, N. M., Kim, M. S., and Baker, R. T. K., J. Phys. Chem. in press.Google Scholar