Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T06:11:36.019Z Has data issue: false hasContentIssue false

Carbon Formation on Supported Metal Catalysts

Published online by Cambridge University Press:  28 February 2011

R. T. K. Baker*
Affiliation:
Chemical Engineering Department, Auburn University, Auburn, AL 36849-3501
Get access

Abstract

The potential for carbon formation exists in any system in which hydrocarbons undergo thermal decomposition. It is well known that certain metals can increase the carbon yield by catalyzing the growth of both filamentous and graphitic types of deposit. The highest catalytic activity for carbon deposition is exhibited by the ferromagnetic metals and in particular, iron.

We have used a combination of controlled atmosphere and high resolution electron microscopy techniques to study the formation of the various types of carbon on metal surfaces. In this paper the emphasis is placed on the fundamental aspects surrounding the growth of filamentous carbon. The qualitative and quantitative data obtained from these studies have enable us to develop a mechanism for the growth of filamentous carbon and also provided insights into methods of inhibiting the growth of this form of carbon. Continuous observation of many filamentous carbon growth sequences has shown that both the addition of a second metal to the catalyst and also the strength of the metal-support interaction can have a profound effect on the mode by which carbon filaments grow.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Baker, R.T.K. and Harris, P.S. in “Chemistry and Physics of Carbon”, Vol 14 (Walker, P.L. Jr. and Thrower, P.A., eds.) Dekker, New York, 1978, p.83.Google Scholar
2. Albright, L.F. and Baker, R.T.K., eds., “Coke Formation on Metal Surfaces”, ACS Symposium Series, 202. American Chemical Society, Washington, D.C., 1982.Google Scholar
3. Dyer, A., ed., “Gas Chemistry in Nuclear Reactors and Large Industrial Plants”, Heyden, London 1980.Google Scholar
4. Baker, R.T.K. and Chludzinski, J.J., J. Catal. 64, 464 (1980).Google Scholar
5. Bennett, M.J. and Price, J.B., J. Mater. Sci 16, 170 (1981).Google Scholar
6. Horsley, G.W. and Cairns, J.A., Appl. Surf. Sci. 18, 273 (1984).Google Scholar
7. Tibbetts, G.G., Appl. Phys. Letters 42, 66 (1983).Google Scholar
8. Baker, R.T.K., Barber, M.A., Harris, P.S., Feates, F.S. and Waite, R.J., J. Catal. 26, 51 (1972).Google Scholar
9. Baker, R.T.K., Harris, P.S., Thomas, R.B. and Waite, R.J., J. Catal. 30, 86 (1973).CrossRefGoogle Scholar
10. Baker, R.T.K. and Waite, R.J., J. Catal. 37, 101 (1975).Google Scholar
11. Baker, R.T.K., Chludzinski, J.J., Dudash, N.S. and Simoens, A.J., Carbon 21, 463 (1983).Google Scholar
12. Baker, R.T.K., Chludzinski, J.J. and Lund, C.F.R., Carbon 25, 295 (1987).Google Scholar
13. Diamond, S. and Wert, C., Trans. AIME 239, 705 (1967).Google Scholar
14. Morgan, D.W. and Kitchener, J.A., Trans. Farad. Soc. 50 51 (1964).Google Scholar
15. Wells, C., Baz, W. and Mehl, R.T., Trans AIME 188, 553 (1950), R.P. Smith, trans AIME 230, 476 (1964).Google Scholar
16. Smith, R.P., Trans. AIME 236, 1224 (1966).Google Scholar
17. Koveenskaj, J.J., Phys. Metlas Metallage (USSR) 16, 107 (1963).Google Scholar
18. Schmidt, F.A. and Warner, J.C., J. Less-Common Metals 26, 325 (1972).Google Scholar
19. Rudman, P.S., Trans. AIME 239, 1949 (1967).Google Scholar
20. Barison, E.V., Gruzin, P.L. and Zemskii, S.V., Zashch. Pokrytiya, Metal 2, 104 (1968).Google Scholar
21. Rostrup-Nielsen, J.R. and Trimm, D.L., J. Catal. 48, 155 (1977).CrossRefGoogle Scholar
22. Yang, R.T. and Yang, K.L., J. Catal. 93, 182 (1985).CrossRefGoogle Scholar
23. Sacco, A., Jr., Thacker, P., Chang, T.N. and Chiang, A.T.S., J. Catal. 85, 224 (1984).Google Scholar
24. Kock, A.J.H.M., Bokx, P.K., Boellard, E., Klop, W. and Geus, J.W., J. Catal. 96, 468 (1985).Google Scholar
25. Bradley, J.R., Chen, Y.-L. and Sturner, H.W., Carbon 23, 715 (1985).Google Scholar
26. Bernardo, C.A. and Lobo, L.S., J. Catal. 37, 267 (1975).CrossRefGoogle Scholar
27. Nishiyama, Y. and Tamai, Y., J. Catal. 33, 98 (1974).Google Scholar
28. Nishiyama, Y. and Tamai, Y., J. Catal.. 45, 1 (1976).Google Scholar
29. Bernardo, C.A., Alstrup, I. and Rostrup-Nielsen, J.R., J. Catal. 96, 517 (1985).Google Scholar
30. Tavares, N.J., Bernardo, C.A., Alstrup, I., and Rostrup-Nielsen, J.R., J. Catal. 100, 545 (1986).Google Scholar
31. Rostrup-Nielsen, J.R., J. Catal. 85, 31 (1984).Google Scholar
32. Audier, M., Coulon, M. and Oberlin, A., Carbon 18, 73 (1980).Google Scholar
33. Audier, M., Oberlin, A. and Coulon, M., J. Cryst. Growth.55, 549 (1981).Google Scholar
34. Baker, R.T.K., Harris, P.S., and Terry, S., Nature 253, 37 (1975).Google Scholar