Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:26:54.207Z Has data issue: false hasContentIssue false

Carbon Doping of GaAs by OMVPE Using CC14: A Comparison of Gallium and Arsenic Precursors

Published online by Cambridge University Press:  26 February 2011

W. S. Hob Son*
Affiliation:
AT&T Bell Laboratories, Murray Hill, New Jersey 07974
Get access

Abstract

The carbon doping properties of GaAs with carbon tetrachloride as the dopant source were examined using trimethylgallium (TMGa) or triethylgallium (TEGa) as the gallium precursors and arsine or tertiarybutylarsine (TBAs) as the arsenic precursors. Secondary ion mass spectrometry (SIMS) and Hall measurements (van der Pauw method) were used to characterize the epitaxial GaAs:C layers. Very high C-doping concentrations (∼1020 cm−3) could be obtained with either TMGa and TEGa. The use of TBAs instead of AsH3 led to a significant reduction in carbon incorporation, by approximately a factor of 5–10 per mole of As precursor, over the temperature range examined (520°C - 700°C). Hydrogen at significant concentrations (0.5 – 6 × 1019 cm−3) was detected by SIMS in GaAs:C layers grown at ≤550°C utilizing all four combinations of Ga/As precursors and suggested the presence of electrically inactive C-H complexes. A post-growth anneal under helium at 550°C for 60s of these samples resulted in a 50–100% increase in hole concentration by driving out the hydrogen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abernathy, C. R., Pearton, S. J., Ren, F., Hobson, W. S., Fullowan, T. R., Katz, A., Jordan, A. S., and Kovalchick, J., J. Cryst. Growth 105, 375 (1990).CrossRefGoogle Scholar
2. Cunningham, B. T., Guido, L. J., Baker, J. E., Major, J. S. Jr, Holonyak, N. Jr, and Stillman, G. E., Appl. Phys. Lett. 55, 687 (1989).Google Scholar
3. Ren, F., Abernathy, C. R., Pearton, S. J., Fullowan, T. R., Lothian, J., and Jordan, A. S., Electron Lett. 26, 724 (1990).Google Scholar
4. Kushibe, M., Eguchi, K., Funamizu, M., and Ohba, Y., Appl. Phys. Lett. 56, 1248 (1990).Google Scholar
5. Kuech, T. F., Tischler, M. A., Wang, P. -J., Scilla, G., Potemski, R., and Cardone, F., Appl. Phys. Lett. 53, 1317 (1988).CrossRefGoogle Scholar
6. Enquist, P. M., Appl. Phys. Lett. 57, 2348 (1990).Google Scholar
7. Hanna, M. C., Lu, Z. H., and Majerfeld, A., Appl. Phys. Lett. 58, 164 (1991).Google Scholar
8. Watkins, S. P. and Haacke, G., Appl. Phys. Lett. 59, 2263 (1991).Google Scholar
9. Kozuch, D. M., Stavola, M., Pearton, S. J., Abernathy, C. R., and Lopata, J., Appl. Phys. Lett. 57, 2561 (1990).CrossRefGoogle Scholar
10. Woodhouse, K., Newman, R. C., de Lyon, T. J., Woodall, J. M., Scilla, G. J., and Cardone, F., Semicond. Sci. Technol. 6, 330 (1991).Google Scholar
11. Hobson, W. S., Harris, T. D., Abernathy, C. R., and Pearton, S. J., Appl. Phys. Lett 58 77 (1991).Google Scholar
12. Cunningham, B. T., Baker, J. E., and Stillman, G. E., Appl. Phys. Lett. 56, 836 (1990).Google Scholar
13. Clerjaud, B., Gendron, F., Krause, M., and Ulrici, W., Phys. Rev. Lett. 65, 1800 (1990).Google Scholar
14. Hobson, W. S., Pearton, S. J., Kozuch, D. M., and Stavola, M., (unpublished results).Google Scholar