Hostname: page-component-7bb8b95d7b-cx56b Total loading time: 0 Render date: 2024-10-05T19:30:13.335Z Has data issue: false hasContentIssue false

Carbon Coated Nanoparticle Composites Synthesized in an RF Plasma Torch

Published online by Cambridge University Press:  10 February 2011

John Henry J. Scott
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
Sara A. Majetich*
Affiliation:
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213
Zafer Turgut
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
Michael E. Mchenry
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213
Maher Boulos
Affiliation:
Plasma Technology Research Center (CRTP), University of Sherbrooke, Sherbrooke, Quebec, Canada
*
* Author to whom correspondence should be addressed, email: [email protected].
Get access

Abstract

FeCo alloy nanoparticles are synthesized in an RF plasma torch reactor and characterized using X-ray powder diffraction (XRD) and transmission electron microscopy (XRD). Bare, uncoated particles exhibit a chain-like agglomeration morphology marked by large ring- and bridge-like structures surrounding open voids. Acetylene was used to generate large numbers of carbon-coated nanoparticles similar to those produced in carbon arc reactors. Conventional TEM of this powder revealed numerous particles below 50 nm in diameter embedded in a carbonaceous matrix. These results establish RF plasma torch processing as a well-characterized, scalable alternative to carbon arc synthesis of encapsulated nanoparticles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ruoff, R. S., Lorents, D. C., Chan, B., Malhotra, R., and Subramoney, S., Science 259, 346 (1993).Google Scholar
2. Majetich, S. A., Artman, J. O., McHenry, M. E., Nuhfer, N. T., and Staley, S. W., Phys. Rev. B 48, 16845 (1993).Google Scholar
3. Tornita, M., Saito, Y., Hayashi, T., Jpn. J. Appl. Phys. 32, L280 (1993);Google Scholar
McHenry, M. E., Majetich, S. A., De Graef, M., Artman, J. O., and Staley, S. W., Phys. Rev. B 49, 11358 (1994).Google Scholar
4. Scott, J. H. and Majetich, S. A., Phys. Rev. B 52, 12564 (1995).Google Scholar
5. Brunsman, E. M., Scott, J. H., Majetich, S. A., Huang, M. Q., McHenry, M. E., J. Appl. Phys. 79, 5293 (1995);Google Scholar
Gallagher, K., Johnson, F., Kirkpatrick, E. M., Scott, J. H., Majetich, S., McHenry, M. E., IEEE Trans. Magn. 32, 4842 (1996).Google Scholar
6. Ladouceur, M., Lalande, G., Guay, D., Dodelet, J. P., Dignard-Bailey, L., Trudeau, M. L., Schulz, R., J. Electrochem. Soc. 140, 1974 (1993).Google Scholar
7. Hayashi, T., Hirono, S., Tornita, M., Umemura, S., Nature 381, 772 (1996).Google Scholar
8. Dravid, V. P., Host, J. J., Teng, M. H., Elliot, B., Hwang, J. H., Johnson, D. L., Mason, T. O., Weertman, J. R., Nature 374, 602 (1995);Google Scholar
Teng, M. H., Host, J. J., Hwang, J. H., Elliot, B. R., Weertman, J. R., Mason, T. O., Dravid, V. P., Johnson, D. L., J. Mater. Res. 10, 233 (1995).Google Scholar
9. Boulos, M. I., Pure and Appl. Chem. 57, 1321 (1985).Google Scholar
10. Scott, J. H., PhD dissertation, Carnegie Mellon University, Department of Physics, 1996.Google Scholar
11. Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., Vasquez, J., Byers, R., Nature 363, 6430 (1993).Google Scholar