Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T07:38:31.066Z Has data issue: false hasContentIssue false

Carbon And Hydrogen Induced Yellow Luminescence In Gallium Nitride Grown By Halide Vapor Phase Epitaxy

Published online by Cambridge University Press:  10 February 2011

R. Zhang
Affiliation:
Department of Chemical Engineering, University of Wisconsin – Madison, Madison, WI 53706
T. F. Kuech
Affiliation:
Department of Chemical Engineering, University of Wisconsin – Madison, Madison, WI 53706
Get access

Abstract

Yellow luminescence (YL) from GaN was systematically investigated through the intentional introduction of carbon, from propane, and excess H2 during growth by the halide vapor phase epitaxy technique. All GaN films were studied by photoluminescence, X-ray diffraction and Hall measurements. The unintentionally doped GaN showed undetectable or very weak YL signal, while both C-doping and H2 addition resulted in a significant enhancement of YL. The blue- and red-shift of the YL band of the C-doped and ‘H2-grown’ GaN with the increasing temperature indicated that different mechanisms existed in these two cases. The temperature dependence of the integrated intensity of the YL band of both groups implicated that shallow donors, not ‘shallow’ acceptors participated the YL transition and that there were more than one radiative recombination channel within the YL band.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nakamura, S., Mat. Res. Soc. Symp. Proc. 449, 1135(1997)Google Scholar
2 Strite, S. and Morkoc, H., J. Vac. Sci. Technol. B10, 1237(1992)Google Scholar
3 Amano, H., Sawaki, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986)Google Scholar
4 Molnar, R.J. and Moustakas, T.D., J. Appl. Phys. 76, 4587(1994)Google Scholar
5 Ogino, T. and Aoki, M., Japn. J. Appl. Phys. 19, 2395 (1980)Google Scholar
6 Ponce, F. A., Bour, D. P., Gotz, W. and Wright, P. J., Appl. Phys. Lett. 68, 57(1996)Google Scholar
7 Liu, J., Perkins, N.R., Horton, M.N., Redwing, J.M., Tischler, M.A. and Kuech, T.F., Appl. Phys. Lett. 69, 3519 (1996)Google Scholar
8 Suski, T., Perlin, P., Teisseyre, H., Leszczynski, M., Grzegory, I., Jun, J., Bockowski, M., Porowski, S. and Moustakas, T.D., Appl. Phys. Lett. 67, 2188 (1995)Google Scholar
9 Neugebauer, J.N. and Walle, C.G. Van de, Appl. Phys. Lett. 69, 503 (1996)Google Scholar
10 Glaser, E.R., Kennedy, T.A., Crookham, H.C., Freitas, J.A. Jr,, Khan, M. Asif, Olson, D.T. and Kuznia, J.N., Appl. Phys. Lett. 63, 2673 (1993)Google Scholar
11 Perkins, N.R., Horton, M.N., Bandic, Z.Z., McGill, T.C. and Kuech, T.F., Mat. Res. Sci. Symp. Proc. 395, 243(1996)Google Scholar
12 Molnar, R.J., Nichols, K.B., Maki, P., Brown, E.R. and Melngailis, I., Mater. Res. Soc. Symp. Proc., 378, 479 (1995)Google Scholar
13 Shan, W., Schmidt, T.J., Yang, X.H., Hwang, S.J., Song, J.J. and Goldenberg, B., Appl. Phys. Lett. 66, 985(1995)Google Scholar
14 Chen, G.D., Smith, M., Lin, J.Y., Jiang, H.X., Khan, M. Asif and Sun, C.J., Appl. Phys. Lett. 67, 1653(1995)Google Scholar
15 Klick, C.C. and Schulman, J.H.: Solid State Physics, eds, Seitz, F. and Turnbull, D. (Academic Press, New York, 1957), Vol.5, p99 Google Scholar