Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T17:36:32.006Z Has data issue: false hasContentIssue false

Capacitance and Transient Photocapacitance Studies of Tetrahedral Amorphous Carbon

Published online by Cambridge University Press:  14 March 2011

Kimon C. Palinginis
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, U.S.A
A. Ilie
Affiliation:
Engineering Department, University of Cambridge, CB2 1PZ, U.K
W.I. Milne
Affiliation:
Engineering Department, University of Cambridge, CB2 1PZ, U.K
J. David Cohen
Affiliation:
Department of Physics, University of Oregon, Eugene, OR 97403, U.S.A
Get access

Abstract

We have applied junction capacitance and transient photocapacitance measurements to undoped tetrahedral amorphous carbon (ta-C)/silicon carbide (SiC) heterostructures to deduce defect densities and defect distributions in ta-C. The junction capacitance measurements show two thermally activated processes. One can be related to the activation of carriers out of defects at the ta-C/SiC interface while the other one with an activation energy of 0.36eV is an intrinsic property of the ta-C. The defect density at the ta-C/SiC interface is estimated to be roughly 9 ± 2 × 109 cm−2. The transient photocapacitance measurements have allowed us to observe the broader band tail of ta-C, giving a value (Urbach energy) of 230meV.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Chhowalla, M., Robertson, J., Chen, C. W., S. Silva, R. P., Davis, C. A., Amaratunga, G. A. J., and Milne, W. I., J. Appl. Phys. 81, 139 (1997)Google Scholar
[2] Lossy, R., Pappas, D. L., Roy, R. A., Cuomo, J. J., and Sura, V. M., Appl. Phys. Lett. 61, 171 (1992)Google Scholar
[3] Milne, W. I., J. Non-Cryst. Solids 198–200, 605 (1996)Google Scholar
[4] Veerasamy, V. S., Yuan, J., Amaratunga, G. A. J., Milne, W. I., Gilkes, K. W. R., Weiler, M., and Brown, L. M., Phys. Rev. B 48, 17954 (1993)Google Scholar
[5] Satyanarayana, B. S., Hart, A., Milne, W. I., and Robertson, J., Appl. Phys. Lett. 71, 1430 (1997)Google Scholar
[6] Palinginis, K. C., Lubianiker, Y., Cohen, J. D., Ilie, A., Kleinsorge, B., and Milne, W. I., Appl. Phys. Lett. 74, 371 (1999)Google Scholar
[7] Palinginis, K. C., Cohen, J. D., Ilie, A., Conway, N. M. J., and Milne, W. I., to be published in J. Non-Cryst. SolidsGoogle Scholar
[8] Lang, D.V., Cohen, J. D., and Harbison, J. P., Phys. Rev. B 25, 5285 (1982)Google Scholar
[9] Gelatos, A. V., Mahavadi, K. K., Cohen, J. D., and Harbison, J. P., Appl. Phys. Lett. 53, 403 (1988)Google Scholar
[10] Sze, S. M. in Physics of Semiconductor Devices 1st Ed. (John Wiley & Sons, New York, 1969), p. 8496 Google Scholar
[11] Veerasamy, V. S., Amaratunga, G. A. J., Davis, C. A., Milne, W. I., Hewitt, P., and Weiler, M., Solid-St. Electron. 37, 319 (1994)Google Scholar
[12] Cohen, J. D. and Gelatos, A. V. in Amorphous Silicon and Related Materials, edited by Fritzsche, H. (World Scientific Publishing Company, 1988), p. 475512 Google Scholar
[13] Conway, N. M. J., Ilie, A., Robertson, J., Milne, W. I., and Tagliaferro, A., Appl. Phys. Lett. 73, 2456 (1998)Google Scholar