Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T18:03:19.815Z Has data issue: false hasContentIssue false

Calorimetric Study of the Energetics and Kinetics of Interdiffusion in Cu/Cu6sn5 Thin Film Diffusion Couples

Published online by Cambridge University Press:  21 February 2011

W. K. Neils
Affiliation:
Binghamton University, Physics Department, Binghamton, NY, 13902–6000
R. R. Chromik
Affiliation:
Binghamton University, Physics Department, Binghamton, NY, 13902–6000
K. F. Dreyer
Affiliation:
Binghamton University, Physics Department, Binghamton, NY, 13902–6000
D. Grosman
Affiliation:
Binghamton University, Physics Department, Binghamton, NY, 13902–6000
E. J. Cotts
Affiliation:
Binghamton University, Physics Department, Binghamton, NY, 13902–6000
Get access

Abstract

We find differential scanning calorimetry to be suitable for the characterization of the energetics and kinetics of interdiflusion in solder/metal diffusion couples. Differential scanning calorimetry studies of interdiffusion in Cu/Cu6Sn5 diffusion couples have shown that the driving force for interdiffusion is similar for thin film composites and for bulk diffusion couples. The heat of formation of Cu3Sn from Cu6Sn5 and Cu thin films was found to be ΔHr = −4.3 + 0.3 kJ/mol. Portions of our differential scanning calorimetry scans are identified with diffusion limited growth of Cu3Sn. From these calorimetry data we have estimated D(cm2 / s) = Do exp(−E / kbT), where kb is Boltzmann's constant, D0 = 3.2 × 10–2 cm2/s, and E=0.87 eV/atom.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Mei, Z., Sunwoo, A. J., and Morris, J. W., Metall. Trans. A 23, 857 (1992).Google Scholar
2 Onishi, M. and Fujibuchi, H., Trans. JIM 16, 539 (1975).Google Scholar
3 Vianco, P. T., Erickson, K. L., and Hopkins, P. L., J. Electron. Mater. 23, 721 (1994).Google Scholar
4 Bandyyopadhyay, A. K. and Sen, S. K., J. Appl. Phys. 67, 3681 (1990).Google Scholar
5 Tu, K. N. and Thompson, R. D., Acta. Metall. 30, 947 (1982).Google Scholar
6 The Mechanics of Solder Alloy Interconnects, edited by Frear, D. R., Burchett, S. N., Morgan, H. S., and Lau, J. H. (Van Nostrana Reinhold, New York, 1994).Google Scholar
7 Gösele, U. and Tu, K. N., J. Appl. Phys. 53, 3252 (1982).Google Scholar
8 Grosman, D. and Cotts, E. J., Phys. Rev. B 48, 5579 (1993).Google Scholar
9 Cotts, E. J., in Thermal Analysis in Metallurgy, edited by Shull, R. D. and Joshi, A. (Minerals, Metals, and Mining Society, Warrendale, PA, 1992), pp. 299328.Google Scholar
10 White, B. E., Part, M. E., and Cotts, E. J., Phys. Rev. B 42, 11017 (1990).Google Scholar
11 Ma, E., Clevenger, L. A., and Thompson, C. V., J. Mater. Sci. 7, 1350 (1992).Google Scholar
12 Highmore, R. J., Somekh, R. E., Evetts, J. E., and Greer, A. L., J. Less-Common Met. 140, 353 (1988).Google Scholar
13 Kubaschewski, O. and Catterall, J. A., Thermochemical Data of Alloys (Pergammon, New York, 1956), pp. 8284.Google Scholar
14 Bader, S., Gust, W., and Hieber, H., Acta. Metall. Mater. 43, 329 (1995).Google Scholar