Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T17:53:49.306Z Has data issue: false hasContentIssue false

Calculations of the Electronic and Atomic Structure and Diffusion of Point Defects in KNbO3 Perovskite Crystals and Relevant KTN Solid Solutions

Published online by Cambridge University Press:  01 February 2011

R. I. Eglitis
Affiliation:
Department of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany
E. A. Kotomin
Affiliation:
Department of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany Institute of Solid State Physics, University of Latvia, 8 Kengaraga str., Riga LV-1063, Latvia
G. Borstel
Affiliation:
Department of Physics, University of Osnabrueck, D-49069 Osnabrueck, Germany
Get access

Abstract

In this paper we review our recent achievements in large scale computer simulations of point defects in advanced perovskite crystals. We have calculated the defect migration energies in the KNbO3 cubic phase using quantum chemical method of the Intermediate Neglect of Differential Overlap (INDO) and classical shell model (SM). The migration energies for the O vacancy obtained by means of these two quite different methods are reasonably close (0.68 eV and 0.79 eV, respectively) and also agree with the only experimental estimate available (ca. 1 eV). Atomic relaxations calculated by these two methods also agree quite well. We used INDO method for a large-scale modeling of the atomic and electronic structure of KNbxTa1-xO3 (KTN) perovskite solid solutions. Results for periodic defect model (large unit cell) of 40 and 320 atoms are compared with 135-atom INDO cluster calculations. Periodic Nb impurities in KTaO3 reveal clear off-center displacement beginning with the smallest calculated concentrations, so does an isolated Nb impurity in a cluster INDO calculation. The magnitude of this displacement is close to the EXAFS observation (0.27 a.u.).

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grigorjeva, L., Millers, D., Kotomin, E. A., and Polzik, E. S., Solid State Commun. 104, 327 (1997).Google Scholar
2. Grigorjeva, L., Millers, D., Pankratov, V., and Williams, R. T., Nucl. Instr. and Meth. in Phys. Res. B 191, 98 (2002).Google Scholar
3. Possenriede, E., Hellermann, B., and Schirmer, O.F., Solid State Commun. 65, 31 (1988).Google Scholar
4. Günter, P. and Huignard, J.-P. (eds.) Photorefractive Materials and Their Applications, Topics in Applied Physics 61-62 (Springer, Berlin, 1988).Google Scholar
5. Hanske-Petitpierre, O., Yacoby, Y., Leon, J. Mustre de, Stern, E.A., and Rehr, J.J., Phys. Rev. B 44, 6700 (1991).Google Scholar
6. Vikhnin, V.S., Eglitis, R.I., Markovin, P.A., and Borstel, G., Phys. Stat. Solidi B 212, 53 (1999).Google Scholar
7. Niemann, R., Hartmann, H., Schneider, B., Hesse, H., Neumann, M., J. Phys.: Cond. Matter 8, 5837 (1996).Google Scholar
8. Shluger, A.L., Theoret. Chim. Acta 66, 355 (1985).Google Scholar
9. Stefanovich, E., Shidlovskaya, E., Shluger, A., and Zakharov, M., Phys. Stat. Solidi B 160, 529 (1990).Google Scholar
10. Shluger, A.L., and Stefanovich, E., Phys. Rev. B 42, 9664 (1990).Google Scholar
11. Vikhnin, V.S., Eglitis, R.I., Kapphan, S.E., Kotomin, E.A., and Borstel, G., Europhys. Lett. 56, 702 (2001).Google Scholar
12. Stefanovich, E., Shluger, A.L., and Catlow, C.R.A., Phys. Rev. B 49, 11560 (1994).Google Scholar
13. Stashans, A., Kotomin, E. A., and Calais, J.-L., Phys. Rev. B 49, 14854 (1994).Google Scholar
14. Kotomin, E.A., Stashans, A., Kantorovich, L.N., Livshitz, A.I., Popov, A.I., Tale, I., and Calais, J.-L., Phys. Rev. B 51, 8770 (1995).Google Scholar
15. Stashans, A., Lunell, S., Bergstrom, R., Hagfeldt, A., and Lundqvist, S.-E., Phys. Rev. B 53, 159 (1996).Google Scholar
16. Eglitis, R.I., Christensen, N.E., Kotomin, E.A., Postnikov, A.V., and Borstel, G., Phys. Rev. B 56, 8599 (1997).Google Scholar
17. Kotomin, E.A., Eglitis, R.I., Postnikov, A.V., Borstel, G., and Christensen, N.E., Phys. Rev. B 60, 1 (1999).Google Scholar
18. Eglitis, R.I., Postnikov, A.V., and Borstel, G., Phys. Rev. B 54, 2421 (1996).Google Scholar
19. Eglitis, R.I., Postnikov, A.V., and Borstel, G., Phys. Rev. B 55, 12976 (1997).Google Scholar
20. Evarestov, R.A., and Lovchikov, L.A., Phys. Stat. Solidi B 93, 469 (1977).Google Scholar
21. Eglitis, R.I., Kotomin, E.A., and Borstel, G., Solid State Comm. 108, 333 (1998).Google Scholar
22. Eglitis, R.I., Kotomin, E.A., and Borstel, G., J. Phys.: Cond. Matter 12, L431 (2000).Google Scholar
23. Nistor, S.V., Goovaerts, E., and Schoemaker, D., Phys. Rev. B 48, 9575 (1993).Google Scholar
24. Faust, B., Müller, H., and Schirmer, O.F., Ferroelectrics 153, 297 (1994).Google Scholar
25. Jacobs, P.W.M., Kotomin, E.A., and Eglitis, R.I., J. Phys.: Cond. Matt. 12, 569 (2000).Google Scholar
26. Smyth, D.M., Ferroelectrics 151, 115 (1994).Google Scholar
27. Postnikov, A.V., Neumann, T., and Borstel, G., Ferroelectrics 164, 101 (1995).Google Scholar