Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T08:52:34.446Z Has data issue: false hasContentIssue false

Calculation of Unstable Mixing Region In Wurtzite InGaN

Published online by Cambridge University Press:  10 February 2011

Toru Takayama
Affiliation:
Solid State Electronics Laboratory, CIS-X329, Stanford University, Stanford, CA94305-4075 Electronics Research Laboratory, Matsushita Electronics Corporation, 1-1 Saiwaicho, Takatsuki, Osaka, 569, Japan
Tetsuzo Ueda
Affiliation:
Solid State Electronics Laboratory, CIS-X329, Stanford University, Stanford, CA94305-4075 Electronics Research Laboratory, Matsushita Electronics Corporation, 1-1 Saiwaicho, Takatsuki, Osaka, 569, Japan
Masahiro Ishida
Affiliation:
Electronics Research Laboratory, Matsushita Electronics Corporation, 1-1 Saiwaicho, Takatsuki, Osaka, 569, Japan
Masaaki Yuri
Affiliation:
Solid State Electronics Laboratory, CIS-X329, Stanford University, Stanford, CA94305-4075 Electronics Research Laboratory, Matsushita Electronics Corporation, 1-1 Saiwaicho, Takatsuki, Osaka, 569, Japan
Kunio Itoh
Affiliation:
Electronics Research Laboratory, Matsushita Electronics Corporation, 1-1 Saiwaicho, Takatsuki, Osaka, 569, Japan
Takaaki Baba
Affiliation:
Electronics Research Laboratory, Matsushita Electronics Corporation, 1-1 Saiwaicho, Takatsuki, Osaka, 569, Japan
James S. Harris Jr
Affiliation:
Solid State Electronics Laboratory, CIS-X329, Stanford University, Stanford, CA94305-4075
Get access

Abstract

The InGaN ternary system, which is useful for blue and green light emitting or laser diodes, is studied with respect to an unstable mixing region in the phase field. The unstable region is analyzed using a strictly regular solution model. The interaction parameter used in the analysis is obtained from a strain energy calculation using the valence force field model, modified for both wurtzite and zinc-blende structures to avoid overestimation of the strain energy. The structural deviation from an ideal wurtzite structure in GaN and InN is also taken into account in our model. The interaction parameters of InGaN obtained by our analysis for the wurtzite and zinc-blende structures are 7.81 kcal/mol and 6.63 kcal/mol, respectively. According to the calculated results of the interaction parameters, the critical temperature for wurtzite InGaN and zinc-blende InGaN are found to be 1967 K and 1668 K, respectively. This suggests that, at a typical growth temperature of 800°C, a wide unstable mixing region exists in both wurtzite and zinc-blende structures. In order to show the validity of our calculation results, we compare the calculated results and the experimental results using the calculation of the interaction parameter for the InGaAs system. The calculated results agree well with the experimental results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nakamura, S., Senoh, M., Iwasa, N., and Nagahama, S., Jpn. J. Appl. Phys. 34, L797(1995).Google Scholar
2. Nakamura, S., Senoh, M., Nagahama, S., Iwasa, N., Yamada, T., and Matsushima, T., Jpn. J. Appl. Phys. 35, L74(1996).Google Scholar
3. Wakahara, A., Tokuda, T., Dang, Xiao-Zhong, Noda, S., and Sasaki, A., Appl. Phys. Lett., 71, p. 906(1997).Google Scholar
4. Singh, R., Doppalapudi, D., and Moustakas, T. D., Appl. Phys. Lett. 70, p. 1089(1997).Google Scholar
5. Stringfellow, G. B., Organometallic Vapor-Phase Epitaxy: Theory and Practice(Academic, San Diego, 1989), Chap. 3.Google Scholar
6. Stringfellow, G. B., J. Electrochem. Soc., 119, p. 1780(1972).Google Scholar
7. Musgrave, M. J. P. and People, J. A., Proc. Roy. Soc., A268, p. 474(1962).Google Scholar
8. Ho, I. and Stringfellow, G. B., Appl. Phys. Lett., 69, p. 2701(1996).Google Scholar
9. Marbeuf, A., Barbe, M., Ramos, A., Levelut, C., Wszolek, S., Acta Crystallographoca, B50, p. 326(1994).Google Scholar
10. Wright, A. F. and Nelson, J. S., Phys. Rev. B50, p. 2159(1994); B51, p. 7866(1995).Google Scholar
11. Martin, R. M., Pys. Rev., B1, p. 4005(1970).Google Scholar
12. Kim, K., Lambrecht, W. R. L., and Segall, B., Phys. Rev. B53, p. 16310(1996).Google Scholar
13. Lei, T., Moustakes, T. D., Graham, R. J., He, Y., and Berkowitz, S. J., J. Appl. Phys., B71, p. 4933(1992).Google Scholar
14. Strite, S., Ruan, J., Smith, D.J., Sariel, J., Manning, N., Chen, H., Choyke, W. J., and Morkoc, H., Bull. Am. Phys. Soc. 37, p. 346(1992).Google Scholar
15. Sze, S. M., Physics of Semiconductor Devices, 2nd Ed., (John Wiley & Sons, New York, 1981)Google Scholar
16. Panish, M. B. and Illegems, M., in Progress in Solid State Chemistry, (Pergamon, New York, 1972)Google Scholar
17. Stringfellow, G. B., J. Cryst. Growth, 27, p.21(1974).Google Scholar