Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:15:22.770Z Has data issue: false hasContentIssue false

Calculation of Mechanical, Thermodynamic and Transport Properties of Metallic Glass Formers

Published online by Cambridge University Press:  10 February 2011

Tahir Çağin
Affiliation:
Materials and Process Simulation Center, 139–74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Yoshitaka Kimura
Affiliation:
Materials and Process Simulation Center, 139–74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Yue Qi
Affiliation:
Materials and Process Simulation Center, 139–74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Hao Li
Affiliation:
Materials and Process Simulation Center, 139–74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Hideyuki Ikeda
Affiliation:
Materials and Process Simulation Center, 139–74 California Institute of Technology, Pasadena, CA 91125, U.S.A. Materials Science Department, California Institute of Technology, Pasadena, CA 91125, U.S.A.
William L. Johnsonb
Affiliation:
Materials Science Department, California Institute of Technology, Pasadena, CA 91125, U.S.A.
William A. Goddard
Affiliation:
Materials and Process Simulation Center, 139–74 California Institute of Technology, Pasadena, CA 91125, U.S.A.
Get access

Abstract

Recently, we have parametrized Sutton-Chen type empirical many body force fields for FCC transition metals to study the thermodynamic, mechanical, transport and phase behavior of metals and their alloys. We have utilized these potentials in lattice dynamics calculations and molecular dynamics simulations to describe the structure, thermodynamic, mechanical and transport properties of pure metals and binary alloys in solid, liquid and glass phases. Here, we will describe these applications: mechanical properties of binary alloys (Pt - Rh) and viscosity of a binary alloy, (Au - Cu), as a function of composition, temperature, and shear rate, crystal-liquid, liquid-crystal phase transformation in (Ni - Cu), liquid to glass transformation in a model glass former, (Ag - Cu).

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Duwez, P., Willens, R. H., and Klement, W. Jr.J. Appl. Phys. 31, 1137 (1960). A. Peker and W. L. Johnson Appl Phys. Left. 63 2342 (1993); X. H. Liu and W. L. Johnson J. Appl. Phys. 78 6514 (1995).Google Scholar
[2] Harrison, W. A., Solid State Theory (Dover, NY, 1979) W. A. Harrison, Electronic Structure and Properties of Solids (Dover, NY, 1980)Google Scholar
[3] Norskov, J. K., Phys. Rev. B 26, 2875 (1982)Google Scholar
[4] Daw, M. S., Baskes, M. L., Phys. Rev. B 29, 6443 (1984)Google Scholar
[5] Finnis, M. W., Sinclair, J. F., Phil. Mag. A, 45 (1984)Google Scholar
[6] Sutton, A. P., Chen, J., Phil. Mag. Lett. 61, 139 (1990)Google Scholar
[7] Rafii-Tabar, H., Sutton, A. P., Phil. Mag. Lett. 63, 217 (1991)Google Scholar
[8] Koleske, D. D., Sibener, S. J., Surf. Sci. 290, 179 (1993)Google Scholar
[9] Nosè, S. Mol. Phys. 52, 255 (1984); S. Nosè J. Chem. Phys. 81, 511 (1984). M. Parrinello and A. Rahman Phys. Rev. Lett. 45 1196 (1980).Google Scholar
[10] Ray, J. R. and Rahman, A. J. Chem. Phys. 82 4243 (1985).Google Scholar
[11] Wendt, H. R. and Abraham, F. F. Phys. Rev. Lett. 41 1244 (1978).Google Scholar