Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:50:04.734Z Has data issue: false hasContentIssue false

Calculation of Electrical Conductivity and Giant Magnetoresistance within the Free Electron Model

Published online by Cambridge University Press:  15 February 2011

X.-G. Zhang
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114
W. H. Butler
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114
Get access

Abstract

We use the model of free electrons with random point scatterers (FERPS) to calculate the electrical conductivity and giant magnetoresistance (GMR) for FeCr multilayer systems and compare our results with the experimental values. Our analysis suggests that the primary cause of the GMR in FeCr systems is regions of interdiffusion near the interfaces. We find that in the samples analyzed, these regions of interdiffusion occupy about 8.5Å of the magnetic layer near each interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Fuchs, K., Proc. Camb. Phil. Soc. 34, 100 (1938).Google Scholar
2. Sondheimer, E. H., Adv. Phys. 1, 1 (1952).Google Scholar
3. Camblong, H. E., Zhang, S., and Levy, P. M., Phys. Rev. B 47, 4735 (1993); H. E. Camblong, Phys. Rev. B 51, 1855 (1995).Google Scholar
4. Zhang, S., Levy, P. M., and Fert, A., Phys. Rev. B 45, 8689 (1992).Google Scholar
5. Kubo, R., J. Phys. Soc. Jpn. 12, 570 (1957).Google Scholar
6. Greenwood, D. A., Proc. Phys. Soc. London 71, 585 (1958).Google Scholar
7. Zhang, X.-G. and Butler, W. H., Phys. Rev. B 51, in press, April 15 (1995).Google Scholar
8.Professor Levy and Dr. Zhang have suggested that the Zhang-Levy-Fert theory may contain some additional terms in the self-energy that are omitted by the FERPS with local self-energy model.Google Scholar
9. Petroff, F., Barthelemy, A., Hamzic, A., Fert, A., Etienne, P., Lequien, S. and Creuzet, G., J. Magn. Magn. Mater. 93, 95 (1991).Google Scholar
10. Baibich, M. N., Broto, J. M., Fert, A., Dau, F. Nguyen Van, Petroff, F., Etienne, P., Creuzet, G., Friederich, A., and Chaezelas, J., Phys. Rev. Lett. 61, 2472, (1988).Google Scholar
11. Barthelemy, A., Fert, A., Baibich, M.N., Hadjoudj, S., Petroff, F., Etienne, P., Cabanel, R., Lequien, S. and Creuzet, G., J. Appl. Phys. 67, 5908 (1990).Google Scholar
12. Shukh, A.M., Shin, D.H. and Hoffmann, H., J. Appl. Phys. 76, 6507 (1994).Google Scholar
13. Butler, W. H., MacLaren, J. M., and Zhang, X.-G., Materials Research Society Symposium Proceedings 313, 59, (1993).Google Scholar
14. Butler, W. H., Zhang, X.-G., Nicholson, D. M. C., and MacLaren, J. M., in this volume.Google Scholar