Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T19:22:09.615Z Has data issue: false hasContentIssue false

Bulk Modulus of the YBaCuO Oxide Superconductor Obtained from Magnetic Measurements

Published online by Cambridge University Press:  28 February 2011

Bokhimi*
Affiliation:
Instituto de Física Unam, a. p. 20–364, 01000 México D. F., Mexico
Get access

Abstract

Starting from the fact that the YBa2Cu3O7-x oxide superconductor system has a constant magnetic susceptibility at high temperatures for each oxygen deficiency x, and assuming that the charge carriers have a free-electron-like behavior, the observed magnetic susceptibility of the samples at room temperature can be associated to the Pauli paramagnetismus and to the Landau diamagnetism of the charge carriers. This result allows one to calculate the charge carriers density from the magnetic susceptibility in the sample. If besides one assume that by applying an external pressure on the sample, there is a change of the volume of the unit cell, but not in the number of the charge carriers in it, then, it is possible to calculate the Bulk modulus of the YBaCuO system at room temperature starting from these magnetic measurements. The obtained results are of the same order of magnitude to those reported in the literature and obtained from thermodynamic and mechanical measurements.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wu, M. K., Meng, R. L., Huang, S. Z. and Chu, C. W., Phys. Rev. B 24, 4075 (1981).Google Scholar
2 Chu, C. W., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J. and Wang, Y. Q., Phys. Rev. Lett. 58, 405 (1987).Google Scholar
3 Chu, C. W., Hor, P. H., Meng, R. L., Gao, L., and Huang, Z. J., Science 235, 567 (1987).Google Scholar
4 Borges, H. A., Kwok, R., Thompson, J. D., Wells, G. L., Smith, J. L., Fisk, Z., and Peterson, D. E., Phys. Rev. B 36, 2404 (1987).Google Scholar
5 Fietz, W. H., Dietrich, M. R., and Ecke, J., Z. Phys. B 69, 17 (1987).Google Scholar
6 Schrieber, J. E., Ginley, D. S., Venturini, E. L., and Morosin, B., Phys. Rev. Rev. B 35, 8709 (1987).Google Scholar
7 Bishop, D. J., Ramirez, A. P., Gammel, P. L., Batlogg, B., Rietman, E. A., Cava, R. J., and Millis, A. J., Phys. Rev. B 36, 2408 (1987).Google Scholar
8 Almond, D. P., Lambson, E., Saunders, G. A., and Wong, Wang, J. Phys. F: Metal Phys. 17, L221 (1987).Google Scholar
9 Lang, M., Lechner, T., Riegel, S., Steglich, F., Weber, G., Kim, T. J., Luethi, B., Wolf, B., Rietschel, H., and Wilhelm, M., Z. Phys. B 69, 459 (1988).Google Scholar
10 Cankurtaran, M., Saunders, G. A., Willis, J. R., Al-Kheffaji, A., and Almond, D. P., Phys. Rev. B 39, 2872 (1989).Google Scholar
11 Takita, K., Prog. High Temp. Phys. 5, 73 (1988).Google Scholar
12 Tranquada, J. M., heald, S. M., Moodenbaugh, A. R., and Xu, Youwen, Phys. Rev. B 38, 8893 (1988).Google Scholar
13 Bokhimi, submitted to Phys. Rev. B.Google Scholar
14 Johnston, D. C., Phys. Rev. Lett. 62, 957 (1989).Google Scholar
15 Dietrich, M. R., Fietz, W. H., Ecke, J., and Obst, B., Z. Phys. B 66, 283 (1987).Google Scholar