Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T17:02:32.386Z Has data issue: false hasContentIssue false

Bulk Growth of SiC

Published online by Cambridge University Press:  01 February 2011

Peter Wellmann
Affiliation:
[email protected], University of Erlangen-Nürnberg, Materials Department 6, Martenstr. 7, Erlangen, 91058, Germany
Ralf P. Müller
Affiliation:
[email protected], University of Erlangen-Nürnberg, Materials Department 6, Martenstr. 7, Erlangen, 91058, Germany
Sakwe A. Sakwe
Affiliation:
[email protected], University of Erlangen-Nürnberg, Materials Department 6, Martenstr. 7, Erlangen, 91058, Germany
Ulrike Künecke
Affiliation:
[email protected], University of Erlangen-Nürnberg, Materials Department 6, Martenstr. 7, Erlangen, 91058, Germany
Philip Hens
Affiliation:
[email protected], University of Erlangen-Nürnberg, Materials Department 6, Martenstr. 7, Erlangen, 91058, Germany
Mathias Stockmeier
Affiliation:
[email protected], University of Erlangen, Physics Department, Chair of Crystallography, Staudtstr. 3, Erlangen, 91058, Germany
Katja Konias
Affiliation:
[email protected], University of Erlangen, Physics Department, Chair of Crystallography, Staudtstr. 3, Erlangen, 91058, Germany
Rainer Hock
Affiliation:
[email protected], University of Erlangen, Physics Department, Chair of Crystallography, Staudtstr. 3, Erlangen, 91058, Germany
Andreas Magerl
Affiliation:
[email protected], University of Erlangen, Physics Department, Chair of Crystallography, Staudtstr. 3, Erlangen, 91058, Germany
Michel Pons
Affiliation:
[email protected], Institut National Polytechnique Grenoble, Labratoire de Thermodynamique et Physiochemie Métallurgiques, 1130 rue de la Piscine, Saint Martin D'Heres, N/A, France
Get access

Abstract

The paper reviews the basics of SiC bulk growth by the physical vapor transport (PVT) method and discuss current and possible future concepts to improve crystalline quality. In-situ process visualization using x-rays, numerical modeling and advanced doping techniques will be briefly presented which support growth process optimization. The “pure” PVT technique will be compared with related developments like the so called Modified-PVT, Continuous-Feeding-PVT, High-Temperature-CVD and Halide-CVD concepts. Special emphasis will be put on dislocation generation and annihilation and concepts to reduce dislocation density during SiC bulk crystal growth. The dislocation study is based on a statistical approach. Rather than following the evolu-tion of a single defect, statistic data which reflect a more global dislocation density evolution are interpreted. In this context a new approach will be presented which relates thermally induced strain during growth and dislocation patterning in networks.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]. Tairov, Y.M. and Tsvetkov, V.F., J. Cryst. Growth, 1978. 43: p. 209212.Google Scholar
[2]. Lely, J.A., Ber. Dt. Keram. Ges., 1955. 32(8): p. 299–231.Google Scholar
[3]. Fujiwara, H., Danno, K., Kimoto, T., Tojo, T., and Matsunami, H., J. Cryst. Growth, 2005. 281: p. 370376.Google Scholar
[4]. Hofmann, D., Heinze, M., Winnacker, A., Durst, F., Kadinski, L., Kaufmann, P., Makarov, Y., and Schäfer, M., J.Cryst.Growth, 1995. 146: p. 214219.Google Scholar
[5]. Pons, M., Blanquet, E., Dedulle, J.M., Garcon, I., Madar, R., and Bernard, C., J.Electrochem.Soc., 1996. 143(11): p. 37273735.Google Scholar
[6]. Wellmann, P.J., Herro, Z., Sakwe, S.A., Masri, P., Bogdanov, M., Karpov, S., Kulik, A., Ramm, M., and Makarov, Y., Mat.Sci.Forum, 2004. 457-460: p. 5558.Google Scholar
[7]. Bogdanov, M.V., Galyukov, A.O., Karpov, S.Y., Kulik, A.V., Kochuguev, S.K., Ofengeim, D.K., Tsiryulnikov, A.V., Ramm, M.S., Zhmakin, A.I., and Makarov, Y.N., J.Cryst.Growth, 2001. 225: p. 307311.Google Scholar
[8]. Wellmann, P.J., Bickermann, M., Hofmann, D., Kadinski, L., Selder, M., Straubinger, T.L., and Winnacker, A., J.Cryst.Growth, 2000. 216: p. 263272.Google Scholar
[9]. Herro, Z.G., Wellmann, P.J., Püsche, R., Hundhausen, M., Ley, L., Maier, M., Masri, P., and Winnacker, A., J.Cryst.Growth, 2003. 258(1-3): p. 261267.Google Scholar
[10]. M üller, S.G., Brady, M.F., Burk, A.A., Hobgood, H.M.D., Jenny, J.R., Leonard, R.T., Malta, D.P., Powell, A.R., Sumakeris, J.J., Tsvetkov, V.F., and , C.H.C. Jr., Superlattices and Microstructures, 2006. 40: p. 195200.Google Scholar
[11]. Wellmann, P., Desperrier, P., Mueller, R., Straubinger, T., Winnacker, A., Baillet, F., Blanquet, E., Dedulle, J.M., and Pons, M., J.Cryst.Growth, 2005. 275(1-2): p. e555–e560.Google Scholar
[12]. Chaussende, D., Baillet, F., Charpentier, L., Pernot, E., Pons, M., and Madar, R., J.Electrochem.Soc, 2003. 150: p. G653.Google Scholar
[13]. Kordina, O., Hallin, C., Ellison, A., Bakin, A.S., Ivanov, I.G., Henry, A., Yakimova, R., Touminen, M., Vehanen, A., and Janzen, E., Appl.Phys.Lett., 1996. 69(10): p. 14561458.Google Scholar
[14]. Ellison, A., Magnusson, B., Sundqvist, B., Pozina, G., Bergman, J.P., Janzén, E., and Vehanen, A., Mater.Sci.Forum, 2004. 457-460: p. 914.Google Scholar
[15]. Chung, H.J., Polyakov, A.Y., Huh, S.W., Nigam, S., Skowronski, M., Fanton, M.A., Weiland, B.E., and Snyder, D.W., J.Appl.Phys., 2005. 97: p. 084913.Google Scholar
[16]. Sakwe, S.A., Müller, R., and Wellmann, P.J., J.Cryst.Growth, 2006. 289(2): p. 520526.Google Scholar
[17]. Seitz, C., Rempel, A., Magerl, A., Gomm, M., Sprengel, W., and Schaefer, H.E., Mater. Sci.Forum, 2003. 433-436: p. 289292.Google Scholar
[18]. Rudolph, P., Frank-Rotsch, C., Juda, U., Naumann, M., and Neubert, M., J.Cryst.Growth, 2004. 265: p. 331340.Google Scholar
[19]. Rudolph, P., Cryst.Res.Technol., 2005. 40(1-2): p. 720.Google Scholar