Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:27:46.821Z Has data issue: false hasContentIssue false

Bulk Effective Moduli: Their Calculation and Usage for Describing Physical Properties of Composite Media

Published online by Cambridge University Press:  28 February 2011

David J. Bergman*
Affiliation:
Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
Get access

Abstract

While not telling the whole story, the representation of a composite medium by a homogeneous effective medium is often an excellent approximation for describing its macroscopic physical properties. Modern methods for calculating the effective medium properties are reviewed with special emphasis on understanding both successes and limitations. Outstanding problems that can and should be tackled are identified. The successes include calculations of the electrical conductivity, dielectric coefficient, and elastic stiffness moduli of composites with a periodic microstructure, and the simulation of those properties for disordered composites near a percolation threshold by means of discrete models such as a random-resistor-network. For composites where the microstructure is either unknown or very complicated, a whole class of exact bounds have been found for these properties based on various types of limited information. Recently, advances have been made in calculating the weak field magneto-transport and the thermoelectric behavior of two-component composites, and also some types of nonlinear properties. An important challenge remains the calculation of magneto-transport at high magnetic fields. Another is the theoretical treatment of multicomponent composites. A third is to find relations between different effective properties of a composite that can enable us to learn about property A by measuring a different property B. This is especially important when the measurement of A would destroy the sample, as when A is the yield stress, whereas the measurement of B is nondestructive, as when B is a small, nonlinear correction to the usual elastic stiffness moduli.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cohen, R. W., Cody, G. D., Coutts, M. D. and Abeles, B., Phys. Rev. B8, 36893701 (1973).Google Scholar
2. Tanner, D. B., Sievers, A. J. and Buhrman, R. A., Phys. Rev. B11, 1330 (1975).Google Scholar
3. Stroud, D. and Pan, F. P., Phys. Rev. B17, 16021610 (1978).Google Scholar
4. Kantor, Y. and Bergman, D. J., J. Phys. C15, 20332042 (1982).Google Scholar
5. Yagil, Y., Yosefin, M., Bergman, D. J. and Deutscher, G., this conference.Google Scholar
6. Electrical Transport and Optical Properties of Inhomogeneous Media, eds. Garland, J. C. and Tanner, D. B., AIP Conf. Proc. No. 40 (1978).Google Scholar
7.ETOPIM 2, eds. Lafait, J. and Tanner, D. B., Physica A157, (1), (1989).Google Scholar
8. Landauer, R., AIP Conf. Proc. No. 40, 243 (1978).Google Scholar
9. Bruggeman, D. A. G., Ann. Physik (Leipzig) 24, 636 (1935).Google Scholar
10. Rayleigh, J. W. S., Phil. Mag. 34, 481 (1892) (Scientific Papers Vol. 4, p.19)Google Scholar
11. McPhedran, R. C. and McKenzie, D. R., Proc. Roy. Soc. Lond. A359, 4563 (1978).Google Scholar
12. Bergman, D. J., J. Phys. C12, 49474960 (1979).Google Scholar
13. Bergman, D. J., Phys. Rev. B19, 23592368 (1979).Google Scholar
14. Kantor, Y. and Bergman, D. J., J. Mech. and Phys. of Solids 30, 355376 (1982).Google Scholar
15. Tao, R., Chen, Z. and Sheng, P., Phys. Rev. B41, 2417 (1989).Google Scholar
16. Sheng, P. and Tao, R., Phys. Rev. B31, 6131 (1985).Google Scholar
17. Wiener, O., Abh. Sachs. Akad. Wiss. Leipzig Math. - Naturwiss. K1. 32, 509 (1912).Google Scholar
18. Hashin, Z. and Shtrikman, S., J. Appl. Phys. 33, 3125 (1962).Google Scholar
19. Beran, M. J. and Molyneux, J., Quart. J. Appl. Math. 24, 107 (1966).Google Scholar
20. Prager, S., J. Chem. Phys. 50, 43054312 (1969).Google Scholar
21. Bergman, D. J., Physics Reports 43, 378407 (1978).Google Scholar
22. Bergman, D. J. in Macroscopic Properties of Disrodered Media, eds. Burridge, R., Childress, S. and Papanicolaou, G., Springer - Verlag, New York 1982, pp. 1037.Google Scholar
23. Kantor, Y. and Bergman, D. J., J. Mech. and Phys. of Solids 32, 4162 (1984).Google Scholar
24. Bergman, D. J., Annals of Physics 138, 78114 (1982).Google Scholar
25. Milton, G. W., Appl. Phys. A26, 207220 (1981).Google Scholar
26. Bergman, D. J. in Homogenization and Effective Media, eds. Ericksen, J. L., Kinderlehrer, D., Kohn, R. and Lions, J. -L., Springer - Verlag, New York 1986, pp. 3751.Google Scholar
27. Korringa, J. and Torraca, G. A. La -, J. Appl. Phys. 60, 29662976 (1986).Google Scholar
28. Bergman, D. J. in Percolation Structures and Processes, eds. Deutscher, G., Zallen, R. and Adler, J., Annals of the Israel Physical Scoiety Vol. 5, 1983, pp. 297321.Google Scholar
29. Bergman, D. J., Phil. Mag. B56, 983990 (1987).Google Scholar
30. Bergman, D. J. and Stroud, D., Phys. Rev. B32, 6097 (1985).Google Scholar
31. Bergman, D. J., Duering, E. and Murat, M., J. Stat. Phys. 58, 143 (1990).Google Scholar
32. Dai, U., Palevski, A. and Deutscher, G., Phys. Rev. B36, 790792 (1987).Google Scholar
33. Rhode, M. and Micklitz, H., Phys. Rev. B36, 7289 (1987).Google Scholar
34. Straley, J. P., Phys. Rev. B15, 57335737 (1977).Google Scholar
35. Stroud, D. and Hui, P. M., Phys. Rev. B37, 8719 (1988).Google Scholar
36. Zeng, X. C., Bergman, D. J., Hui, P. M. and Stroud, D., Phys. Rev. B38, 1097010973 (1988).Google Scholar
37. Bergman, D. J., Phys. Rev. B39, 45984609 (1989).Google Scholar
38. Mantese, J. V., Goldburg, W. I., Darling, D. H., Graighead, H. G., Gibson, U. J., Buhrman, R. A. and Webb, W. W., Sol. St. Comm. 37, 353357 (1981).Google Scholar
39. Garfunkel, G. A. and Weissman, M. B., Phys. Rev. Lett. 55, 296299 (1985).Google Scholar
40. Koch, R. H., Laibowitz, R. B., Alessandrini, E. I. and Viggiano, J. M., Phys. Rev. B32, 69326935 (1985).Google Scholar
41. Rudman, D. A., Calabrese, J. J. and Garland, J. C., Phys. Rev. B33, 14561459 (1986).Google Scholar
42. Wright, D., Bergman, D. J. and Kantor, Y., Phys. Rev. B33, 396401 (1986).Google Scholar
43. Duering, E. and Bergman, D. J., to appear in J. Stat. Phys.Google Scholar
44. Rammal, R., Tannous, C., Breton, P. and Tremblay, A.-M.S., Phys. Rev. Lett. 54, 17181721 (1985).Google Scholar
45. Stauffer, D., Introduction to Percolation Theory, Taylor and Francis, London 1985.Google Scholar
46. Stauffer, D., Physics Reports 54, 174 (1979).Google Scholar
47. Percolation Structures and Processes, eds. Deutscher, G., Zallen, R. and Adler, J., Annals of the Israel Physical Society, Vol. 5, Adam Hilger, Bristol 1983.Google Scholar
48. Les Methodes de L'Homogeneisation: Theorie et Applications en Physique, Editions Eyrolles, Paris 1985.Google Scholar